En elektromagnetismo, la Ampera cirkvita leĝo permesas kalkuli la valoron de la magneta kampo, dank'al la dateno de elektraj kurentoj. Tiu leĝo de Ampère estas simpligita integrala formo de unu el la ekvacioj de Maxwell nomita ekvacio de Maxwell-Ampère. Ĝi estis malkovrita de André Marie Ampère en 1826, kaj estas konsiderata kiel ekvivalenta al la gaŭsa leĝo en elektrostatiko. Por esti analitike kaj simple aplikita, tiu ampera leĝo koncernas prefereble problemjon kun alta fizika simetrio.
[1]
Ampera cirkvita leĝo
Per proksimumado de kvazaŭstabilaj aŭ stabilaj fenomenoj, la ampera cirkvita leĝo indikas ke la kontura integralo, laŭ fermita kurbo, de magneta kampintenso kreita de distribuo de elektraj kurentoj egalas al la algebra sumo de kurentoj, kiuj tra-iras la surfacon difinitan per la orientita cirkvito.
Atentu, estas algebra sumo (adicio de signaj nombroj): oni devas orienti la konturon, kaj do difini normalan vektoron de la surfaco, sekvante konvenon de signoj de kurentoj konsiderataj pozitive aŭ negative laŭ iliaj direktoj.
Diversaj formoj de kurentoj
Oni povas konsideri diversajn kazojn de kurentoj ĉirkaŭigitaj de cirkvito.
Kiam la cirkvito ĉirkaŭas plurajn dratformajn kurentojn, tiam la totala ĉirkaŭigita elektra intenseco estas kalkulota laŭ la formulo:
kie estas la kurento de la drato i.
Kiam la cirkvito ĉirkaŭas linean kurenton kun lineara ŝarga denseco, tiam la ĉirkaŭigita elektra intenseco estas kalkulota laŭ la formulo:
.
Kiam la cirkvito ĉirkaŭas surfacan kurenton kun surfaca ŝarga denseco, tiam la ĉirkaŭigita elektra intenseco estas kalkulota laŭ la formulo:
Konsideru cirklonC de radiuso r ĉirkaŭ longa maldika konduktilo, kiu estas perpendikla al la ebeno de la cirklo, kaj en kiu cirkulas kurenton I1. Apliku al ĝi la amperan cirkvitan leĝon:
en vakuo:
do:
Konsideru nun, paralele al la unua, duan konduktilon kun longo , en kiu cirkulas kurenton I2, je la distanco r. Ĉi tiu estas submetita al la magneta indukto B1, do al laplaca forto, pro la kurento en la alia konduktilo: