The Wigner–Araki–Yanase theorem , also known as the WAY theorem , is a result in quantum physics establishing that the presence of a conservation law limits the accuracy with which observables that fail to commute with the conserved quantity can be measured .[ 1] [ 2] [ 3] It is named for the physicists Eugene Wigner ,[ 4] Huzihiro Araki and Mutsuo Yanase.[ 5] [ 6]
The theorem can be illustrated with a particle coupled to a measuring apparatus.[ 7] : 421 If the position operator of the particle is
q
{\displaystyle q}
and its momentum operator is
p
{\displaystyle p}
, and if the position and momentum of the apparatus are
Q
{\displaystyle Q}
and
P
{\displaystyle P}
respectively, assuming that the total momentum
p
+
P
{\displaystyle p+P}
is conserved implies that, in a suitably quantified sense, the particle's position itself cannot be measured. The measurable quantity is its position relative to the measuring apparatus, represented by the operator
q
−
Q
{\displaystyle q-Q}
. The Wigner–Araki–Yanase theorem generalizes this to the case of two arbitrary observables
A
{\displaystyle A}
and
B
{\displaystyle B}
for the system and an observable
C
{\displaystyle C}
for the apparatus, satisfying the condition that
B
+
C
{\displaystyle B+C}
is conserved.[ 8] [ 9]
Mikko Tukiainen gave a generalized version of the WAY theorem, which makes no use of conservation laws, but uses quantum incompatibility instead.[ 10]
Yui Kuramochi and Hiroyasu Tajima proved a generalized form of the theorem for possibly unbounded and continuous conserved observables.[ 11]
References
^ Baez, John C. (1994-05-10). "Week 33" . This Week's Finds in Mathematical Physics . Retrieved 2020-02-10 .
^ Ahmadi, Mehdi; Jennings, David; Rudolph, Terry (2013-01-28). "The Wigner–Araki–Yanase theorem and the quantum resource theory of asymmetry" . New Journal of Physics . 15 (1): 013057. arXiv :1209.0921 . Bibcode :2013NJPh...15a3057A . doi :10.1088/1367-2630/15/1/013057 . ISSN 1367-2630 . {{cite journal }}
: CS1 maint: article number as page number (link )
^ Loveridge, L.; Busch, P. (2011). " 'Measurement of quantum mechanical operators' revisited". The European Physical Journal D . 62 (2): 297– 307. arXiv :1012.4362 . Bibcode :2011EPJD...62..297L . doi :10.1140/epjd/e2011-10714-3 . ISSN 1434-6060 . S2CID 17995482 .
^ Wigner, E. P. (1995), Mehra, Jagdish (ed.), "Die Messung quantenmechanischer Operatoren", Philosophical Reflections and Syntheses , Springer Berlin Heidelberg, pp. 147– 154, doi :10.1007/978-3-642-78374-6_10 , ISBN 978-3-540-63372-3 . For an English translation, see Busch, P. (2010). "Translation of "Die Messung quantenmechanischer Operatoren" by E.P. Wigner". arXiv :1012.4372 [quant-ph ].
^ Araki, Huzihiro ; Yanase, Mutsuo M. (1960-10-15). "Measurement of Quantum Mechanical Operators" . Physical Review . 120 (2): 622– 626. Bibcode :1960PhRv..120..622A . doi :10.1103/PhysRev.120.622 . ISSN 0031-899X .
^ Yanase, Mutsuo M. (1961-07-15). "Optimal Measuring Apparatus". Physical Review . 123 (2): 666– 668. Bibcode :1961PhRv..123..666Y . doi :10.1103/PhysRev.123.666 . ISSN 0031-899X .
^ Peres, Asher (1995). Quantum Theory: Concepts and Methods . Kluwer Academic Publishers. ISBN 0-7923-2549-4 .
^ Ghirardi, G. C. ; Miglietta, F.; Rimini, A.; Weber, T. (1981-07-15). "Limitations on quantum measurements. I. Determination of the minimal amount of nonideality and identification of the optimal measuring apparatuses". Physical Review D . 24 (2): 347– 352. Bibcode :1981PhRvD..24..347G . doi :10.1103/PhysRevD.24.347 . ISSN 0556-2821 .
^ Ghirardi, G. C. ; Miglietta, F.; Rimini, A.; Weber, T. (1981-07-15). "Limitations on quantum measurements. II. Analysis of a model example". Physical Review D . 24 (2): 353– 358. Bibcode :1981PhRvD..24..353G . doi :10.1103/PhysRevD.24.353 . ISSN 0556-2821 .
^ Tukiainen, Mikko (20 January 2017). "Wigner-Araki-Yanase theorem beyond conservation laws" . Physical Review A . 95 (1) 012127. arXiv :1611.05905 . Bibcode :2017PhRvA..95a2127T . doi :10.1103/PhysRevA.95.012127 .
^ Kuramochi, Yui; Tajima, Hiroyasu (2023-11-21). "Wigner-Araki-Yanase Theorem for Continuous and Unbounded Conserved Observables" . Phys. Rev. Lett . 131 (21): 210201. arXiv :2208.13494 . Bibcode :2023PhRvL.131u0201K . doi :10.1103/PhysRevLett.131.210201 . PMID 38072616 . {{cite journal }}
: CS1 maint: article number as page number (link )