Whitehead's point-free geometry

In mathematics, point-free geometry is a geometry whose primitive ontological notion is region rather than point. Two axiomatic systems are set out below, one grounded in mereology, the other in mereotopology and known as connection theory.

Point-free geometry was first formulated by Alfred North Whitehead,[1] not as a theory of geometry or of spacetime, but of "events" and of an "extension relation" between events. Whitehead's purposes were as much philosophical as scientific and mathematical.[2]

Formalizations

Whitehead did not set out his theories in a manner that would satisfy present-day canons of formality. The two formal first-order theories described in this entry were devised by others in order to clarify and refine Whitehead's theories. The domain of discourse for both theories consists of "regions." All unquantified variables in this entry should be taken as tacitly universally quantified; hence all axioms should be taken as universal closures. No axiom requires more than three quantified variables; hence a translation of first-order theories into relation algebra is possible. Each set of axioms has but four existential quantifiers.

Inclusion-based point-free geometry (mereology)

The fundamental primitive binary relation is inclusion, denoted by the infix operator "≤", which corresponds to the binary Parthood relation that is a standard feature in mereological theories. The intuitive meaning of xy is "x is part of y." Assuming that equality, denoted by the infix operator "=", is part of the background logic, the binary relation Proper Part, denoted by the infix operator "<", is defined as:

The axioms are:[3]

G1. (reflexive)
G2. (transitive) WP4.
G3. (antisymmetric)
  • Given any two regions, there exists a region that includes both of them. WP6.
G4.
G5.
G6.
  • Proper Parts Principle. If all the proper parts of x are proper parts of y, then x is included in y. WP3.
G7.

A model of G1–G7 is an inclusion space.

Definition.[4] Given some inclusion space S, an abstractive class is a class G of regions such that S\G is totally ordered by inclusion. Moreover, there does not exist a region included in all of the regions included in G.

Intuitively, an abstractive class defines a geometrical entity whose dimensionality is less than that of the inclusion space. For example, if the inclusion space is the Euclidean plane, then the corresponding abstractive classes are points and lines.

Inclusion-based point-free geometry (henceforth "point-free geometry") is essentially an axiomatization of Simons's system W.[5] In turn, W formalizes a theory of Whitehead[6] whose axioms are not made explicit. Point-free geometry is W with this defect repaired. Simons did not repair this defect, instead proposing in a footnote that the reader do so as an exercise. The primitive relation of W is Proper Part, a strict partial order. The theory[7] of Whitehead (1919) has a single primitive binary relation K defined as xKyy < x. Hence K is the converse of Proper Part. Simons's WP1 asserts that Proper Part is irreflexive and so corresponds to G1. G3 establishes that inclusion, unlike Proper Part, is antisymmetric.

Point-free geometry is closely related to a dense linear order D, whose axioms are G1-3, G5, and the totality axiom [8] Hence inclusion-based point-free geometry would be a proper extension of D (namely D ∪ {G4, G6, G7}), were it not that the D relation "≤" is a total order.

Connection theory (mereotopology)

A different approach was proposed in Whitehead (1929), one inspired by De Laguna (1922). Whitehead took as primitive the topological notion of "contact" between two regions, resulting in a primitive "connection relation" between events. Connection theory C is a first-order theory that distills the first 12 of Whitehead's 31 assumptions[9] into 6 axioms, C1-C6.[10] C is a proper fragment of the theories proposed by Clarke,[11] who noted their mereological character. Theories that, like C, feature both inclusion and topological primitives, are called mereotopologies.

C has one primitive relation, binary "connection," denoted by the prefixed predicate letter C. That x is included in y can now be defined as xy ↔ ∀z[CzxCzy]. Unlike the case with inclusion spaces, connection theory enables defining "non-tangential" inclusion,[12] a total order that enables the construction of abstractive classes. Gerla and Miranda (2008) argue that only thus can mereotopology unambiguously define a point.

C1.
C2.
C3.
  • All regions have proper parts, so that C is an atomless theory. P.9.
C4.
  • Given any two regions, there is a region connected to both of them.
C5.
  • All regions have at least two unconnected parts. C.14.
C6.

A model of C is a connection space.

Following the verbal description of each axiom is the identifier of the corresponding axiom in Casati and Varzi (1999). Their system SMT (strong mereotopology) consists of C1-C3, and is essentially due to Clarke (1981).[13] Any mereotopology can be made atomless by invoking C4, without risking paradox or triviality. Hence C extends the atomless variant of SMT by means of the axioms C5 and C6, suggested by chapter 2 of part 4 of Process and Reality.[14]

Biacino and Gerla (1991) showed that every model of Clarke's theory is a Boolean algebra, and models of such algebras cannot distinguish connection from overlap. It is doubtful whether either fact is faithful to Whitehead's intent.

See also

Notes

References

  1. ^ Whitehead (1919, 1920)
  2. ^ See Kneebone (1963), chpt. 13.5, for a gentle introduction to Whitehead's theory. Also see Lucas (2000), chpt. 10.
  3. ^ The axioms G1 to G7 are, but for numbering, those of Def. 2.1 in Gerla and Miranda (2008) (see also Gerla (1995)). The identifiers of the form WPn, included in the verbal description of each axiom, refer to the corresponding axiom in Simons (1987: 83).
  4. ^ Gerla and Miranda 2008: Def. 4.1).
  5. ^ Simons (1987: 83)
  6. ^ Whitehead (1919)
  7. ^ Kneebone (1963), p. 346.
  8. ^ Stoll, R. R., 1963. Set Theory and Logic. Dover reprint, 1979. P. 423.
  9. ^ In chapter 2 of part 4 of Process and Reality
  10. ^ The axioms C1-C6 below are, but for numbering, those of Def. 3.1 in Gerla and Miranda (2008)
  11. ^ Clarke (1981)
  12. ^ Presumably this is Casati and Varzi's (1999) "Internal Part" predicate, IPxy ↔ (x≤y)∧(Czx→∃v[vzvy]. This definition combines their (4.8) and (3.1).
  13. ^ Grzegorczyk (1960) proposed a similar theory, whose motivation was primarily topological.
  14. ^ For an advanced and detailed discussion of systems related to C, see Roeper (1997).

Bibliography

  • Biacino L., and Gerla G., 1991, "Connection Structures," Notre Dame Journal of Formal Logic 32: 242-47.
  • Casati, R., and Varzi, A. C., 1999. Parts and places: the structures of spatial representation. MIT Press.
  • Clarke, Bowman, 1981, "A calculus of individuals based on 'connection'," Notre Dame Journal of Formal Logic 22: 204-18.
  • ------, 1985, "Individuals and Points," Notre Dame Journal of Formal Logic 26: 61-75.
  • De Laguna, T., 1922, "Point, line and surface as sets of solids," The Journal of Philosophy 19: 449-61.
  • Gerla, G., 1995, "Pointless Geometries" in Buekenhout, F., Kantor, W. eds., Handbook of incidence geometry: buildings and foundations. North-Holland: 1015-31.
  • --------, and Miranda A., 2008, "Inclusion and Connection in Whitehead's Point-free Geometry," in Michel Weber and Will Desmond, (eds.), Handbook of Whiteheadian Process Thought, Frankfurt / Lancaster, ontos verlag, Process Thought X1 & X2.
  • Gruszczynski R., and Pietruszczak A., 2008, "Full development of Tarski's geometry of solids," Bulletin of Symbolic Logic 14:481-540. The paper contains presentation of point-free system of geometry originating from Whitehead's ideas and based on Lesniewski's mereology. It also briefly discusses the relation between point-free and point-based systems of geometry. Basic properties of mereological structures are given as well.
  • Grzegorczyk, A., 1960, "Axiomatizability of geometry without points," Synthese 12: 228-235.
  • Kneebone, G., 1963. Mathematical Logic and the Foundation of Mathematics. Dover reprint, 2001.
  • Lucas, J. R., 2000. Conceptual Roots of Mathematics. Routledge. Chpt. 10, on "prototopology," discusses Whitehead's systems and is strongly influenced by the unpublished writings of David Bostock.
  • Roeper, P., 1997, "Region-Based Topology," Journal of Philosophical Logic 26: 251-309.
  • Simons, P., 1987. Parts: A Study in Ontology. Oxford Univ. Press.
  • Whitehead, A.N., 1916, "La Theorie Relationiste de l'Espace," Revue de Metaphysique et de Morale 23: 423-454. Translated as Hurley, P.J., 1979, "The relational theory of space," Philosophy Research Archives 5: 712-741.
  • --------, 1919. An Enquiry Concerning the Principles of Natural Knowledge. Cambridge Univ. Press. 2nd ed., 1925.
  • --------, 1920. The Concept of Nature. Cambridge Univ. Press. 2004 paperback, Prometheus Books. Being the 1919 Tarner Lectures delivered at Trinity College.
  • --------, 1979 (1929). Process and Reality. Free Press.

Read other articles:

Carang gesing (Hanacaraka: ꦕꦫꦁ​ꦒꦼꦱꦶꦁ) adalah penganan jajanan pasar dari kawasan Surakarta, Jawa Tengah. Bahan utama adalah buah pisang yang dipotong-potong lalu diberi bumbu santan dan rempah penyedap (seperti daun pandan dan garam). Adonan ini lalu dibungkus daun pisang dan kemudian dikukus. Bentuk bungkusan serupa dengan nagasari, tetapi berbeda isinya. Carang gesing biasa dijual pada pagi hari, dapat dimakan dalam bentuk hangat maupun setelah didinginkan. Carang gesing, ...

 

Ini adalah nama Korea; marganya adalah Lee. Lee Sun-binLee Sun-bin pada Oktober 2018Nama asal이선빈LahirLee Jin-kyung (이진경)7 Januari 1994 (umur 30)Cheonan, Chungcheong Selatan, Korea SelatanKebangsaanKorea SelatanPekerjaan Aktris model Tahun aktif2014–sekarangTinggi166 cm (5 ft 5 in)[1]Karier musikGenreK-popInstrumenVokalgitar[2]kibor[3]pianoTahun aktif2011–sekarangLabelWellmade Star ENT (2017–sekarang)Imagine Asia (2014–2...

 

العلاقات البولندية السريلانكية بولندا سريلانكا   بولندا   سريلانكا تعديل مصدري - تعديل   العلاقات البولندية السريلانكية هي العلاقات الثنائية التي تجمع بين بولندا وسريلانكا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: و�...

Lentföhrden Lambang kebesaranLetak Lentföhrden di Segeberg NegaraJermanNegara bagianSchleswig-HolsteinKreisSegeberg Municipal assoc.Kaltenkirchen-LandPemerintahan • MayorKurt Sander (CDU)Luas • Total20,07 km2 (775 sq mi)Ketinggian23 m (75 ft)Populasi (2013-12-31)[1] • Total2.454 • Kepadatan1,2/km2 (3,2/sq mi)Zona waktuWET/WMPET (UTC+1/+2)Kode pos24632Kode area telepon04191, 04192Pelat kendaraanSESitus...

 

FlutterTipeKerangka kerja Versi pertamaAlpha (v0.0.6) / Mei 2017; 6 tahun lalu (2017-05)[1]Versi stabil 3.19.0 (15 Februari 2024) GenreKerangka kerja aplikasiLisensilisensi BSD 3-ayat Karakteristik teknisBahasa pemrogramanC++, Dart dan Skia Graphics Engine Informasi pengembangPembuatGooglePengembangGoogle dan komunitasSumber kode Kode sumberPranala Informasi tambahanSitus webflutter.devStack ExchangeEtiqueta Panduan penggunaLaman panduan Sunting di Wikidata  • Sunting kota...

 

Basilika di Rybnik Rybnik ialah sebuah kota di selatan Polandia, dekat perbatasan Republik Ceko, di provinsi Silesia. Olahraga Rybnik memiliki klub sepak bola: ROW Rybnik. Kota kembar Dorsten (Jerman) Eurasburg (Jerman) Haderslev (Denmark) Ivano-Frankivs'k (Ukraina) Karvina (Republik Ceko) Larissa (Yunani) Liévin (Prancis) Mazamet (Prancis) Newtonabbey (Irlandia Utara) Saint-Vallier (Prancis) Szolnok (Hungaria) Vilnius (Lituania) Pranala luar (Polandia) http://www.rybnik.pl (Polandia) http:/...

TrideviSupreme Trinity of the UniverseCreation, preservation, and destructionPara Brahman, the Supreme BeingThe Tridevi, featured in the left, with their consorts, the TrimurtiDevanagariत्रिदेवीSanskrit transliterationtridevīAffiliation Saraswati (Knowledge) Lakshmi (Prosperity) Parvati (Power) Abode Satyaloka (Saraswati) Vaikuntha (Lakshmi) Mount Kailash (Parvati) MantraOṃ Tridevibhayaḥ NamaḥMount Swan or Peacock (Saraswati) Elephant or Owl (Lakshmi) Lion and Tiger (Pa...

 

Existen dudas o desacuerdos sobre la exactitud de la información en este artículo o sección. Consulta el debate al respecto en la página de discusión.Este aviso fue puesto el 27 de octubre de 2019. Apeninos sículos Vista de los Peloritani, paisaje boscoso típico de los Apeninos sículos.Ubicación geográficaContinente EuropaCordillera Apeninos meridionales (en los Apeninos)Coordenadas 37°54′N 14°30′E / 37.9, 14.5Ubicación administrativaPaís Italia ItaliaD...

 

Cartina di Cuba con i confini dei comuni Le province di Cuba sono suddivise in 169 comuni o municipios. Sono definiti dalla Legge numero 1304 del 3 luglio 1976.[1] Indice 1 Comuni per provincia 1.1 Provincia di Artemisa 1.2 Provincia di Camagüey 1.3 Provincia di Ciego de Ávila 1.4 Provincia di Cienfuegos 1.5 L'Avana 1.6 Provincia di Granma 1.7 Provincia di Guantánamo 1.8 Provincia di Holguín 1.9 Isola della Gioventù 1.10 Provincia di Las Tunas 1.11 Provincia di Matanzas 1.12 Prov...

American basketball player and coach (1932–2020) For the American football player, see K. C. Jones (American football). For other people, see Casey Jones (disambiguation). K. C. JonesJones with the Boston Celtics in 1960Personal informationBorn(1932-05-25)May 25, 1932Taylor, Texas, U.S.DiedDecember 25, 2020(2020-12-25) (aged 88)Connecticut, U.S.Listed height6 ft 1 in (1.85 m)Listed weight200 lb (91 kg)Career informationHigh schoolCommerce(San Francisco, Califor...

 

Semestene SemèsteneKomuneComune di SemesteneLokasi Semestene di Provinsi SassariNegaraItaliaWilayah SardiniaProvinsiSassari (SS)Pemerintahan • Wali kotaAntonella BudaLuas • Total39,58 km2 (15,28 sq mi)Ketinggian405 m (1,329 ft)Populasi (2016) • Total157[1]Zona waktuUTC+1 (CET) • Musim panas (DST)UTC+2 (CEST)Kode pos07010Kode area telepon079Situs webhttp://www.comune.semestene.ss.it Semestene (bahasa Sardini...

 

British–Irish Parliamentary AssemblyPurposeGovernmental relations (deliberative body)HeadquartersSecretariatLondon and DublinOriginsGood Friday AgreementRegion served British Isles IrelandMembership (1999) 8;  United Kingdom  Scotland  Wales Northern Ireland  Republic of Ireland  Isle of Man  Guernsey  JerseyOfficial language English, Scottish Gaelic, Scots ,Irish, WelshCo-chairsKaren BradleyBrendan SmithJoint-ClerksMartyn AtkinsRegina BoyleMembership25 m...

Religion in North Korea (2005)[1]   No religion (64.3%)  Shamanism (16%)  Chondoism (13.5%)  Buddhism (4.5%)  Christianity (1.7%) Religion by country Africa Algeria Angola Benin Botswana Burkina Faso Burundi Cameroon Cape Verde Central African Republic Chad Comoros Democratic Republic of the Congo Republic of the Congo Djibouti Egypt Equatorial Guinea Eritrea Eswatini Ethiopia Gabon Gambia Ghana Guinea Guinea-Bissau Ivory Coast Kenya ...

 

General Motors engine factory in Livonia, Michigan, United States (1971–2010) Livonia Engine was a General Motors engine factory in Livonia, Michigan. It is located at 12200 Middlebelt Rd and opened in 1971. The plant closed in June 2010.[1] Products GM Premium V engine References ^ Carty, Daniel (June 1, 2009). List of GM Plant Closings. CBS News. Retrieved October 21, 2018. vteGeneral Motors assembly plantsUnited StatesCurrent Arlington Bowling Green Detroit/Hamtramck Fairfax Flin...

 

قيادة العمليات الخاصة للولايات المتحدة   الدولة الولايات المتحدة  الإنشاء 16 أبريل 1987  جزء من وزارة دفاع الولايات المتحدة  الموقع الرسمي الموقع الرسمي  تعديل مصدري - تعديل   قيادة العمليات الخاصة للولايات المتحدة (بالإنجليزية: United States Special Operations Command)‏ المعرو...

Capital of Kazakhstan Nur-Sultan redirects here. For other uses, see Astana (disambiguation) and Nursultan. Akmola redirects here. For the region that surrounds Astana, see Akmola Region. Capital city and city of republican significance in KazakhstanAstana АстанаCapital city and city of republican significance Left to right, from the top:Downtown Astana with Baiterek tower, Ishim River, Nurjol Boulevard, Nazarbayev University, L. N. Gumilyov Eurasian National University, and Astana Oper...

 

Danish footballer John Hansen Hansen with Juventus in the early 1950sPersonal informationFull name John Angelo ValdemarØstergaard HansenDate of birth 24 June 1924[1]Place of birth Copenhagen, DenmarkDate of death 12 January 1990(1990-01-12) (aged 65)Place of death Copenhagen, DenmarkHeight 1.87 m (6 ft 2 in)Position(s) Inside Forward, Left wingerSenior career*Years Team Apps (Gls)1943–1948[2] BK Frem 86 (81)1948–1954[3] Juventus 187 (124)1954�...

 

كأس الكؤوس الأوروبية     معلومات عامة الرياضة كرة القدم انطلقت 1960 انتهت 1999 (دُمجت مع كأس الاتحاد الأوروبي) المنظم الاتحاد الأوروبي لكرة القدم التواتر سنوية عدد المشاركين فرق من أوروبا (يويفا) 32 (مرحلة المجموعات) 49 (المجموع) الموقع الرسمي الصفحة الرسمية قائمة الفائزين آ�...

目連が母を救う(中国語: 目連救母) 『盂蘭盆経』(うらぼんきょう)は、竺法護が翻訳したとされる仏教経典である[1]。竺法護の翻訳という伝承には疑いが持たれており[1]、西域か中国で成立したいわゆる偽経とされる[注釈 1]。釈迦十大弟子の一人である目連尊者が餓鬼道に堕ちた亡母を救うために衆僧供養を行なったところ、母が餓鬼の身を脱し�...

 

Arturo VidalVidal con la nazionale cilena nel 2017Nazionalità Cile Altezza180[1] cm Peso75[1] kg Calcio RuoloCentrocampista Squadra Colo-Colo CarrieraGiovanili 1997-2004 Rodelindo Román2004-2005 Dep. Melipilla[2] Squadre di club1 2005-2007 Colo-Colo36 (2)2007-2011 Bayer Leverkusen117 (15)2011-2015 Juventus124 (35)2015-2018 Bayern Monaco79 (14)2018-2020 Barcellona66 (11)2020-2022 Inter51 (2)2022-2023 Flamengo21 (2)[...