Upper and lower bounds

A set with upper bounds and its least upper bound

In mathematics, particularly in order theory, an upper bound or majorant[1] of a subset S of some preordered set (K, ≤) is an element of K that is greater than or equal to every element of S.[2][3] Dually, a lower bound or minorant of S is defined to be an element of K that is less than or equal to every element of S. A set with an upper (respectively, lower) bound is said to be bounded from above or majorized[1] (respectively bounded from below or minorized) by that bound. The terms bounded above (bounded below) are also used in the mathematical literature for sets that have upper (respectively lower) bounds.[4]

Examples

For example, 5 is a lower bound for the set S = {5, 8, 42, 34, 13934} (as a subset of the integers or of the real numbers, etc.), and so is 4. On the other hand, 6 is not a lower bound for S since it is not smaller than every element in S. 13934 and other numbers x such that x ≥ 13934 would be an upper bound for S.

The set S = {42} has 42 as both an upper bound and a lower bound; all other numbers are either an upper bound or a lower bound for that S.

Every subset of the natural numbers has a lower bound since the natural numbers have a least element (0 or 1, depending on convention). An infinite subset of the natural numbers cannot be bounded from above. An infinite subset of the integers may be bounded from below or bounded from above, but not both. An infinite subset of the rational numbers may or may not be bounded from below, and may or may not be bounded from above.

Every finite subset of a non-empty totally ordered set has both upper and lower bounds.

Bounds of functions

The definitions can be generalized to functions and even to sets of functions.

Given a function f with domain D and a preordered set (K, ≤) as codomain, an element y of K is an upper bound of f if yf(x) for each x in D. The upper bound is called sharp if equality holds for at least one value of x. It indicates that the constraint is optimal, and thus cannot be further reduced without invalidating the inequality.

Similarly, a function g defined on domain D and having the same codomain (K, ≤) is an upper bound of f, if g(x) ≥ f(x) for each x in D. The function g is further said to be an upper bound of a set of functions, if it is an upper bound of each function in that set.

The notion of lower bound for (sets of) functions is defined analogously, by replacing ≥ with ≤.

Tight bounds

An upper bound is said to be a tight upper bound, a least upper bound, or a supremum, if no smaller value is an upper bound. Similarly, a lower bound is said to be a tight lower bound, a greatest lower bound, or an infimum, if no greater value is a lower bound.

Exact upper bounds

An upper bound u of a subset S of a preordered set (K, ≤) is said to be an exact upper bound for S if every element of K that is strictly majorized by u is also majorized by some element of S. Exact upper bounds of reduced products of linear orders play an important role in PCF theory.[5]

See also

References

  1. ^ a b Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8. New York, NY: Springer New York Imprint Springer. p. 3. ISBN 978-1-4612-7155-0. OCLC 840278135.
  2. ^ Mac Lane, Saunders; Birkhoff, Garrett (1991). Algebra. Providence, RI: American Mathematical Society. p. 145. ISBN 0-8218-1646-2.
  3. ^ "Upper Bound Definition (Illustrated Mathematics Dictionary)". Math is Fun. Retrieved 2019-12-03.
  4. ^ Weisstein, Eric W. "Upper Bound". mathworld.wolfram.com. Retrieved 2019-12-03.
  5. ^ Kojman, Menachem (21 August 1998). "Exact upper bounds and their uses in set theory". Annals of Pure and Applied Logic. 92 (3): 267–282. doi:10.1016/S0168-0072(98)00011-6.

Read other articles:

Jalan Batuta asli di Warsawa. Kebohongan Henryk Batuta adalah peristiwa pembohongan yang terjadi di Wikipedia bahasa Polandia sejak November 2004 sampai Februari 2006. Sejarah Para pelaku merintis sebuah artikel tentang Henryk Batuta (nama lahir Izaak Apfelbaum), seorang revolusioner sosialis dan komunis Polandia fiktif. Biografi palsunya menyebutkan Batuta lahir di Odessa tahun 1898 dan berpartisipasi dalam Perang Saudara Rusia. Artikel ini dibuat tanggal 8 November 2004 dan ketahuan palsu 1...

 

Sugeng Riyanta Pj Bupati Tapanuli TengahPetahanaMulai menjabat 15 November 2023PresidenJoko WidodoGubernurHassanudinWakil PresidenMa'ruf Amin PendahuluElfin Elyas Nainggolan(Pelaksana Tugas)PenggantiPetahana Informasi pribadiLahir4 November 1972 (umur 51)Kulon Progo, Yogyakarta, IndonesiaKebangsaan IndonesiaSuami/istriAde Riana Wiranti, S.H.ProfesiJaksaSunting kotak info • L • B serah terima jabatan Kepala Kejaksaan Tinggi dan Pejabat Eselon II dan Eselon III di li...

 

German prelate of the Catholic Church (born 1952) Heinrich Timmerevers (2016) Heinrich Timmerevers (born 25 August 1952) is a German prelate of the Catholic Church. A bishop since 2001, he has been the 50th Bishop of Dresden-Meissen since 2016. Early life and career Timmerevers was born in Nikolausdorf in Kreis Cloppenburg in Lower Saxony, Germany, on 25 August 1952, the second of six children in a family of farmers in an all-Catholic community. He attended Clemens-August-Gymnasium in Cloppen...

Provincia del Verbano-Cusio-Ossolaprovincia montana di confine[1] Provincia del Verbano-Cusio-Ossola – VedutaVilla Taranto, sede della prefettura LocalizzazioneStato Italia Regione Piemonte AmministrazioneCapoluogo Verbania PresidenteAlessandro Lana (lista civica di centro-destra) dal 19-12-2021 Data di istituzione30 aprile 1992[2] TerritorioCoordinatedel capoluogo45°56′N 8°32′E / 45.933333°N 8.533333°E45.933333; 8.533333 (Prov...

 

The neutrality of this article is disputed. Relevant discussion may be found on the talk page. Please do not remove this message until conditions to do so are met. (January 2024) (Learn how and when to remove this template message) Neighborhood of Boston in Suffolk, Massachusetts, United StatesHyde ParkNeighborhood of BostonThe First Congregational Church of Hyde Park SealNickname: A Small Town in the CityMotto(s): Si Tentas Perfice (Latin)If you begin, finishCountryUnited StatesSta...

 

القوة النووية هي القوة المتبادلة بين نيوكلونين أو أكثر.[1][2][3] وهي مسؤولة عن ربط البروتونات والنيوترونات في النواة الذرية. القوة النووية طبيعة القوة النووية هناك عدد من القوى الأساسية المعروفة لدينا والموجودة في الطبيعة مثل قوى الجذب والقوى الكهرومغناطيسية و�...

39°22′21″N 76°38′11″W / 39.372407°N 76.63626°W / 39.372407; -76.63626 Private, all-boys day, k-12 (education) school in Baltimore, MD, USABoys' Latin School of MarylandAddress822 W. Lake AvenueBaltimore, MDUSAInformationTypePrivate, All-boys Day, K-12 (education)MottoEsse Quam Videri (to be, rather than to seem)Established1844; 180 years ago (1844)HeadmasterChristopher Post[1]Faculty81Enrollment600 total (300 9-12)[1]Averag...

 

English rock and metal guitarist This article is about the musician. For the rugby league player, see Richie Blackmore (rugby league). Ritchie BlackmoreBlackmore in 2017Background informationBirth nameRichard Hugh BlackmoreAlso known asThe Man in BlackBorn (1945-04-14) 14 April 1945 (age 79)Weston-super-Mare, Somerset, EnglandOriginHeston, Municipal Borough of Heston and Isleworth, Middlesex, EnglandGenres Hard rock heavy metal blues rock progressive rock folk rock neoclassical metal Occ...

 

Mead School DistrictAddress2323 E Farwell Road Mead, Washington, 99021United StatesCoordinates47°46′23″N 117°22′32″W / 47.77306°N 117.37556°W / 47.77306; -117.37556District informationMottoLearn. Lead. Mead.GradesK–12SuperintendentTravis Hanson [1]NCES District ID5304920[2]Affiliation(s)Washington State Office of Superintendent of Public Instruction, U.S. Department of EducationStudents and staffEnrollment10,275 (2021-2022 school year)Tea...

此條目可参照英語維基百科相應條目来扩充。 (2023年12月1日)若您熟悉来源语言和主题,请协助参考外语维基百科扩充条目。请勿直接提交机械翻译,也不要翻译不可靠、低品质内容。依版权协议,译文需在编辑摘要注明来源,或于讨论页顶部标记{{Translated page}}标签。 此條目需要补充更多来源。 (2021年4月4日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能�...

 

Pour les articles homonymes, voir Valette. La Valette-du-Var Vue de la commune au premier plan Blason Administration Pays France Région Provence-Alpes-Côte d’Azur Département Var Arrondissement Toulon Intercommunalité Métropole Toulon Provence Méditerranée Maire Mandat Thierry Albertini 2020-2026 Code postal 83160 Code commune 83144 Démographie Gentilé Valettois Populationmunicipale 23 955 hab. (2021 ) Densité 1 545 hab./km2 Géographie Coordonnées 43° ...

 

Indian satellite television provider It has been suggested that Sun Direct GO be merged into this article. (Discuss) Proposed since November 2023. SUN DIRECTCompany typePrivateIndustrySatellite televisionFoundedAugust 26, 2007; 16 years ago (2007-08-26) )DefunctOctober 31, 2018; 5 years ago (2018-10-31)Headquarters73, MRC Nagar Main Road, MRC Nagar, Chennai, IndiaArea servedIndiaKey peopleKalanithi Maran (Chairman)ProductsSatellite television, pay televisio...

Spanish judo athlete In this Spanish name, the first or paternal surname is Arce and the second or maternal family name is Payno. Marta ArcePersonal informationFull nameMarta Arce PaynoNationalitySpanishBorn (1977-07-27) 27 July 1977 (age 46)Valladolid, SpainSportCountry SpainSportJudo Medal record Women's judo Representing  Spain Paralympic Games 2004 Athens -57 kg 2008 Beijing -63 kg 2012 London -63 kg European Para Championships 2023 Rotterdam -57...

 

Presidente Constitucional de la República del Perú (2011–2016) Ollanta Humala TassoGobierno del PerúPresidente Ollanta Humala TassoVicepresidentes Marisol Espinoza CruzOmar Chehade Moya(2011-2012)Presidente del Consejo de Ministros Salomón Lerner Ghitis(2011)Óscar Valdés Dancuart(2011-2012)Juan Jiménez Mayor(2012-2013)César Villanueva Arévalo(2013-2014)René Cornejo Díaz(2014)Ana Jara Velásquez(2014-2015)Pedro Cateriano Bellido(2015-2016)PeríodoInicio 28 de julio de 2011Término...

 

  此条目页的主題是美國西維吉尼亞州的一個縣。关于同名的縣,請見「俄亥俄县」。 此條目没有列出任何参考或来源。 (2019年1月9日)維基百科所有的內容都應該可供查證。请协助補充可靠来源以改善这篇条目。无法查证的內容可能會因為異議提出而被移除。 俄亥俄县Ohio County县西弗吉尼亚独立厅俄亥俄县于西弗吉尼亚州中的位置西弗吉尼亚州于美国的位置坐标:40�...

Maria SpiridonovaLahir(1884-10-16)16 Oktober 1884Tambov, Kegubernuran Tambov, Kekaisaran RusiaMeninggal11 September 1941(1941-09-11) (umur 56)Oryol, Oblast Oryol, SFSR Rusia, Uni Soviet Maria Alexandrovna Spiridonova (bahasa Rusia: Мари́я Алекса́ндровна Спиридо́нова; 16 Oktober 1884 – 11 September 1941) adalah seorang revolusioner Rusia yang terinspirasi Narodnik. Ia adalah satu-satunya wanita selain Alexandra Kollontai yang memainkan ...

 

2012 film by Trivikram Srinivas JulayiTheatrical release posterDirected byTrivikram SrinivasWritten byTrivikram SrinivasProduced byS. Radha KrishnaD. V. V. Danayya (presenter)StarringAllu Arjun Ileana D'CruzSonu SoodCinematographyChota K. Naidu Shyam K. NaiduEdited byPrawin PudiMusic byDevi Sri PrasadProductioncompanyHaarika & Hassine CreationsDistributed bySiri MediaFicus IncRelease date 9 August 2012 (2012-08-09) Running time152 minutesCountryIndiaLanguageTelugu Julayi (t...

 

2021 Armenian parliamentary election ← 2018 20 June 2021 Next → All 101 seats in the National Assembly(plus additional and leveling seats)51 seats needed for a majorityTurnout49.37% Party Leader % Seats +/– Civil Contract Nikol Pashinyan 53.95 71 −11 Armenia Alliance Robert Kocharyan 21.11 29 New I Have Honor Alliance Arthur Vanetsyan 5.22 7 New This lists parties that won seats. See the complete results below. Prime Minister before Prime Minister after Nikol Pashin...

Vietnam War draft protests, 1964–1973 Young men burn their draft cards in New York City on April 15, 1967, at Sheep Meadow, Central Park. Draft-card burning was a symbol of protest performed by thousands of young men in the United States and Australia in the 1960s and early 1970s as part of the anti-war movement. The first draft-card burners were American men participating in the opposition to United States involvement in the Vietnam War. The first well-publicized protest was in December 19...

 

The bulk synchronous parallel (BSP) abstract computer is a bridging model for designing parallel algorithms. It is similar to the parallel random access machine (PRAM) model, but unlike PRAM, BSP does not take communication and synchronization for granted. In fact, quantifying the requisite synchronization and communication is an important part of analyzing a BSP algorithm. History The BSP model was developed by Leslie Valiant of Harvard University during the 1980s. The definitive article was...