This means that the space of states is generated by three primary states, which correspond to three primary fields or operators:[1]
The decomposition of the space of states into irreducible representations of the product of the left- and right-moving Virasoro algebras is
where is the irreducible highest-weight representation of the Virasoro algebra with the conformal dimension.
In particular, the Ising model is diagonal and unitary.
Characters and partition function
The characters of the three representations of the Virasoro algebra that appear in the space of states are[1]
The fusion rules are invariant under the symmetry .
The three-point structure constants are
Knowing the fusion rules and three-point structure constants, it is possible to write operator product expansions, for example
where are the conformal dimensions of the primary fields, and the omitted terms are contributions of descendant fields.
Correlation functions on the sphere
Any one-, two- and three-point function of primary fields is determined by conformal symmetry up to a multiplicative constant. This constant is set to be one for one- and two-point functions by a choice of field normalizations. The only non-trivial dynamical quantities are the three-point structure constants, which were given above in the context of operator product expansions.
with .
The three non-trivial four-point functions are of the type . For a four-point function , let and be the s- and t-channel Virasoro conformal blocks, which respectively correspond to the contributions of (and its descendants) in the operator product expansion, and of (and its descendants) in the operator product expansion . Let be the cross-ratio.
In the case of , fusion rules allow only one primary field in all channels, namely the identity field.[2]
In the case of , fusion rules allow only the identity field in the s-channel, and the spin field in the t-channel.[2]
In the case of , fusion rules allow two primary fields in all channels: the identity field and the energy field.[2] In this case we write the conformal blocks in the case only: the general case is obtained by inserting the prefactor , and identifying with the cross-ratio.
In the case of , the conformal blocks are:
From the representation of the model in terms of Dirac fermions, it is possible to compute correlation functions of any number of spin or energy operators:[1]
These formulas have generalizations to correlation functions on the torus, which involve theta functions.[1]
Other observables
Disorder operator
The two-dimensional Ising model is mapped to itself by a high-low temperature duality. The image of the spin operator under this duality is a disorder operator , which has the same left and right conformal dimensions . Although the disorder operator does not belong to the minimal model, correlation functions involving the disorder operator can be computed exactly, for example[1]
whereas
Connectivities of clusters
The Ising model has a description as a random cluster model due to Fortuin and Kasteleyn. In this description, the natural observables are connectivities of clusters, i.e. probabilities that a number of points belong to the same cluster.
The Ising model can then be viewed as the case of the -state Potts model, whose parameter can vary continuously, and is related to the central charge of the Virasoro algebra.
In the critical limit, connectivities of clusters have the same behaviour under conformal transformations as correlation functions of the spin operator. Nevertheless, connectivities do not coincide with spin correlation functions: for example, the three-point connectivity does not vanish, while . There are four independent four-point connectivities, and their sum coincides with .[3] Other combinations of four-point connectivities are not known analytically. In particular they are not related to correlation functions of the minimal model,[4] although they are related to the limit of spin correlators in the -state Potts model.[3]
References
^ abcdefP. Di Francesco, P. Mathieu, and D. Sénéchal, Conformal Field Theory, 1997, ISBN0-387-94785-X
^ abcCheng, Miranda C. N.; Gannon, Terry; Lockhart, Guglielmo (2020-02-25). "Modular Exercises for Four-Point Blocks -- I". arXiv:2002.11125v1 [hep-th].
Artikel ini memberikan informasi dasar tentang topik kesehatan. Informasi dalam artikel ini hanya boleh digunakan untuk penjelasan ilmiah; bukan untuk diagnosis diri dan tidak dapat menggantikan diagnosis medis. Wikipedia tidak memberikan konsultasi medis. Jika Anda perlu bantuan atau hendak berobat, berkonsultasilah dengan tenaga kesehatan profesional. Serangan panikSeseorang yang mengalami serangan panik, ditenangkan oleh orang lain.Informasi umumSpesialisasiPsikiatriPenyebabgangguan panik,...
Peta perwakilan diplomatik di Brasil Ini adalah daftar perwakilan diplomatik di Brasil. Saat ini, 133 negara memiliki kedutaan besar di ibu kota Brasília. Beberapa negara lain memiliki duta besar merangkap Brasil yang rata-rata berkedudukan di Washington, D.C.. Konsulat kehormatan dan wakil konsulat tidak dicantumkan dalam daftar ini. Kedutaan besar Brasília Albania Aljazair Angola Argentina Armenia Australia Austria Azerbaijan Banglades...
Community Shield FA 2018Sampul pertandingan Chelsea Manchester City 0 2 Tanggal5 Agustus 2018StadionStadion Wembley, LondonPemain Terbaik Sergio Agüero (Manchester City)WasitJonathan Moss (West Yorkshire)[1]Penonton72.724← 2017 2019 → Community Shield FA 2018 adalah pertandingan sepak bola antara Manchester City dan Chelsea yang diselenggarakan pada 5 Agustus 2018 di Stadion Wembley, London. Pertandingan ini merupakan pertandingan ke-96 dari penyelenggaraan Community Shie...
Bagian dari seriIslam Rukun Iman Keesaan Allah Malaikat Kitab-kitab Allah Nabi dan Rasul Allah Hari Kiamat Qada dan Qadar Rukun Islam Syahadat Salat Zakat Puasa Haji Sumber hukum Islam al-Qur'an Sunnah (Hadis, Sirah) Tafsir Akidah Fikih Syariat Sejarah Garis waktu Muhammad Ahlulbait Sahabat Nabi Khulafaur Rasyidin Khalifah Imamah Ilmu pengetahuan Islam abad pertengahan Penyebaran Islam Penerus Muhammad Budaya dan masyarakat Akademik Akhlak Anak-anak Dakwah Demografi Ekonomi Feminisme Filsafat...
American sculptor (1918–2009) Emile NormanBornEmil Nomann[citation needed]April 22, 1918 (1918-04-22)San Gabriel, California, U.S.DiedSeptember 24, 2009 (2009-09-25) (aged 91)Monterey, California, U.S.Known forSculpture, mosaic, panel, jewelryNotable workMosaic window/stone sculpturesNob Hill Masonic CenterSan Francisco, California, U.S. Emile Norman (April 22, 1918 ‒ September 24, 2009), born Emil Nomann, was an American artist, widely known for his sculptures...
« Firefox » redirige ici. Pour les autres significations et les articles homonymes, voir Firefox (homonymie) et Mozilla. Vous lisez un « bon article » labellisé en 2008. Mozilla Firefox Firefox 110.0 sur Microsoft Windows 10 Informations Créateur Mozilla Foundation, David Hyatt, Joe Hewitt (en) et Blake Ross Développé par Mozilla Corporation et Mozilla Foundation Première version 0.1 (23 septembre 2002)[1] Dernière version 115.10.0esr (16 avril 2024)[2]125.0.3 (...
Multi-use indoor arena in Saskatoon, Saskatchewan SaskTel CentreSaskTel CentreLocation within SaskatchewanShow map of SaskatchewanSaskTel CentreLocation within CanadaShow map of CanadaFormer namesSaskatchewan Place (1988–2004)Credit Union Centre (2004–2014)Address3315 Thatcher AvenueSaskatoon, SaskatchewanS7R 1C4Coordinates52°11′20″N 106°40′44″W / 52.189°N 106.679°W / 52.189; -106.679OwnerCity of SaskatoonExecutive suites51Capacity15,100[1]Lacro...
烏克蘭總理Прем'єр-міністр України烏克蘭國徽現任杰尼斯·什米加尔自2020年3月4日任命者烏克蘭總統任期總統任命首任維托爾德·福金设立1991年11月后继职位無网站www.kmu.gov.ua/control/en/(英文) 乌克兰 乌克兰政府与政治系列条目 宪法 政府 总统 弗拉基米尔·泽连斯基 總統辦公室 国家安全与国防事务委员会 总统代表(英语:Representatives of the President of Ukraine) 总...
Cheddar-based cheese, incorporating herbs For other uses, see Tintern (disambiguation). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Tintern cheese – news · newspapers · books · scholar · JSTOR (February 2022) (Learn how and when to remove this message) TinternCountry of originWalesRegionMonmouthshireTown...
أكاديمية الفنون الجميلة في فيينا معلومات التأسيس 1692 الموقع الجغرافي إحداثيات 48°12′05″N 16°21′55″E / 48.201388888889°N 16.365277777778°E / 48.201388888889; 16.365277777778 [1] المكان فيينا البلد النمسا رقم الهاتف +43 1 588161818[2] إحصاءات عدد الطلاب 1494 (28 فبراير 2017)[3]1613...
Anglican Church of Australia Wapen van de Anglicaanse Kerk van Australië Indeling Hoofdstroming Protestantisme Richting Anglicanisme Voortgekomen uit In 1962 afgesplitst van de Kerk van Engeland Aard Locatie Australië Aantal leden 3.101.200 Hoofdkwartier Brisbane Overzicht Officiële website http://www.anglican.org.au Portaal Christendom De Anglicaanse Kerk van Australië (Engels:Anglican Church of Australia) is het op een na grootste kerkgenootschap in Australië, na de Katho...
قنبلة إم 67 النوع قنبلة يدوية بلد الأصل الولايات المتحدة تاريخ الاستخدام فترة الاستخدام 1968-الآن المستخدمون الولايات المتحدة، كندا السعودية الحروب حرب فيتنام، حرب الخليج الثانية، حرب أفغانستان (2001 - الآن)، التسلسل الزمني لحرب العراق تاريخ الصنع صمم 1950 صنع 1968 المواصفات الوز...
Estonian Nordic combined skier and ski jumper Jens SalumäeBorn (1981-03-15) 15 March 1981 (age 43)Tallinn, Estonia[1]Height5 ft 9 in (1.75 m)Ski clubPuijon HihtoseuraPersonal best197mWorld Cup careerSeasons2002–2007Updated on 13 January 2012. Jens Salumäe (born 15 March 1981)[1] is an Estonian former ski jumper and nordic combined skier who has been competing since 2002. He finished 23rd in the individual large hill event at the 2006 Winter Ol...
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Great Dance Crew (Hanzi: 了不起舞社) adalah sebuah acara realitas kelompok tari perempuan Tiongkok tahun 2022 yang disiarkan di Youku. Juri dalam acara tersebut meliputi TEN WayV, Alec Su, Wang Feifei, Cheng Xiao, dan Santa Uno.[1] Ref...
The Marshall Mathers LP 2 Студийный альбом Эминема Дата выпуска 5 ноября 2013 Дата записи март 2012 — октябрь 2013[1] Жанры Хип-хоп, Рэп-рок Длительность 77:55 Продюсеры Aalias Alex da Kid Cardiak DJ Khalil Dr. Dre (exec.) DVLP Emile Эминем Filthy Frank Dukes Frequency Jeff Bhasker Luis Resto M-Phazes Rick Rubin (Также исп.продюсер) S1 Sid Roams Streetrunner ...
Este artículo o sección necesita referencias que aparezcan en una publicación acreditada. Busca fuentes: «Patty McCormack» – noticias · libros · académico · imágenesEste aviso fue puesto el 5 de enero de 2016. Patty McCormack McCormack y Peter Fonda en 1962.Información personalNombre de nacimiento Patricia Elena RussoNacimiento 21 de agosto de 1945 (78 años) Brooklyn, Nueva York, Estados UnidosNacionalidad EstadounidenseFamiliaCónyuge Bob Catania (m. 19...
Voce principale: Genoa Cricket and Football Club. Genoa Cricket and Football ClubStagione 1910-1911Sport calcio Squadra Genoa Allenatore Eugen Herzog Presidente Edoardo Pasteur Prima Categoria5º posto. Maggiori presenzeCampionato: Eduard Bauer (16) Miglior marcatoreCampionato: Giulio Crocco (6) 1909-1910 1911-1912 Si invita a seguire il modello di voce Questa pagina raccoglie i dati riguardanti il Genoa Cricket and Football Club nelle competizioni ufficiali della stagione 1910-1911. In...