Thrust-to-weight ratio

Thrust-to-weight ratio is a dimensionless ratio of thrust to weight of a rocket, jet engine, propeller engine, or a vehicle propelled by such an engine that is an indicator of the performance of the engine or vehicle.

The instantaneous thrust-to-weight ratio of a vehicle varies continually during operation due to progressive consumption of fuel or propellant and in some cases a gravity gradient. The thrust-to-weight ratio based on initial thrust and weight is often published and used as a figure of merit for quantitative comparison of a vehicle's initial performance.

Calculation

The thrust-to-weight ratio is calculated by dividing the thrust (in SI units – in newtons) by the weight (in newtons) of the engine or vehicle. The weight (N) is calculated by multiplying the mass in kilograms (kg) by the acceleration due to gravity (m/s2). The thrust can also be measured in pound-force (lbf), provided the weight is measured in pounds (lb). Division using these two values still gives the numerically correct (dimensionless) thrust-to-weight ratio. For valid comparison of the initial thrust-to-weight ratio of two or more engines or vehicles, thrust must be measured under controlled conditions.

Because an aircraft's weight can vary considerably, depending on factors such as munition load, fuel load, cargo weight, or even the weight of the pilot, the thrust-to-weight ratio is also variable and even changes during flight operations. There are several standards for determining the weight of an aircraft used to calculate the thrust-to-weight ratio range.

  • Empty weight - The weight of the aircraft minus fuel, munitions, cargo, and crew.
  • Combat weight - Primarily for determining the performance capabilities of fighter aircraft, it is the weight of the aircraft with full munitions and missiles, half fuel, and no drop tanks or bombs.
  • Max takeoff weight - The weight of the aircraft when fully loaded with the maximum fuel and cargo that it can safely takeoff with.[1]

Aircraft

The thrust-to-weight ratio and lift-to-drag ratio are the two most important parameters in determining the performance of an aircraft.

The thrust-to-weight ratio varies continually during a flight. Thrust varies with throttle setting, airspeed, altitude, air temperature, etc. Weight varies with fuel burn and payload changes. For aircraft, the quoted thrust-to-weight ratio is often the maximum static thrust at sea level divided by the maximum takeoff weight.[2] Aircraft with thrust-to-weight ratio greater than 1:1 can pitch straight up and maintain airspeed until performance decreases at higher altitude.[3]

A plane can take off even if the thrust is less than its weight as, unlike a rocket, the lifting force is produced by lift from the wings, not directly by thrust from the engine. As long as the aircraft can produce enough thrust to travel at a horizontal speed above its stall speed, the wings will produce enough lift to counter the weight of the aircraft.

Propeller-driven aircraft

For propeller-driven aircraft, the thrust-to-weight ratio can be calculated as follows in imperial units:[4]

where is propulsive efficiency (typically 0.65 for wooden propellers, 0.75 metal fixed pitch and up to 0.85 for constant-speed propellers), hp is the engine's shaft horsepower, and is true airspeed in feet per second, weight is in lbs.

The metric formula is:

Rockets

Rocket vehicle thrust-to-weight ratio vs specific impulse for different propellant technologies

The thrust-to-weight ratio of a rocket, or rocket-propelled vehicle, is an indicator of its acceleration expressed in multiples of gravitational acceleration g.[5]

Rockets and rocket-propelled vehicles operate in a wide range of gravitational environments, including the weightless environment. The thrust-to-weight ratio is usually calculated from initial gross weight at sea level on earth[6] and is sometimes called thrust-to-Earth-weight ratio.[7] The thrust-to-Earth-weight ratio of a rocket or rocket-propelled vehicle is an indicator of its acceleration expressed in multiples of earth's gravitational acceleration, g0.[5]

The thrust-to-weight ratio of a rocket improves as the propellant is burned. With constant thrust, the maximum ratio (maximum acceleration of the vehicle) is achieved just before the propellant is fully consumed. Each rocket has a characteristic thrust-to-weight curve, or acceleration curve, not just a scalar quantity.

The thrust-to-weight ratio of an engine is greater than that of the complete launch vehicle, but is nonetheless useful because it determines the maximum acceleration that any vehicle using that engine could theoretically achieve with minimum propellant and structure attached.

For a takeoff from the surface of the earth using thrust and no aerodynamic lift, the thrust-to-weight ratio for the whole vehicle must be greater than one. In general, the thrust-to-weight ratio is numerically equal to the g-force that the vehicle can generate.[5] Take-off can occur when the vehicle's g-force exceeds local gravity (expressed as a multiple of g0).

The thrust-to-weight ratio of rockets typically greatly exceeds that of airbreathing jet engines because the comparatively far greater density of rocket fuel eliminates the need for much engineering materials to pressurize it.

Many factors affect thrust-to-weight ratio. The instantaneous value typically varies over the duration of flight with the variations in thrust due to speed and altitude, together with changes in weight due to the amount of remaining propellant, and payload mass. Factors with the greatest effect include freestream air temperature, pressure, density, and composition. Depending on the engine or vehicle under consideration, the actual performance will often be affected by buoyancy and local gravitational field strength.

Examples

Aircraft

Vehicle thrust-weight ratio Notes
Northrop Grumman B-2 Spirit 0.205[8] Max take-off weight, full power
Airbus A340 0.2229 Max take-off weight, full power (A340-300 Enhanced)
Airbus A380 0.227 Max take-off weight, full power
Boeing 747-8 0.269 Max take-off weight, full power
Boeing 777 0.285 Max take-off weight, full power (777-200ER)
Boeing 737 MAX 8 0.311 Max take-off weight, full power
Airbus A320neo 0.310 Max take-off weight, full power
Boeing 757-200 0.341 Max take-off weight, full power (w/Rolls-Royce RB211)
Tupolev 154B 0.360 Max take-off weight, full power (w/Kuznecov NK-82)
Tupolev Tu-160 0.363 [citation needed] Max take-off weight, full afterburners
Concorde 0.372 Max take-off weight, full afterburners
Rockwell International B-1 Lancer 0.38 Max take-off weight, full afterburners
HESA Kowsar 0.61 With full fuel, afterburners.
BAE Hawk 0.65[9]
Lockheed Martin F-35 A 0.87 [citation needed] With full fuel (1.07 with 50% fuel, 1.19 with 25% fuel)
HAL Tejas Mk 1 1.07 With full fuel
CAC/PAC JF-17 Thunder 1.07 With full fuel
Dassault Rafale 0.988[10] Version M, 100% fuel, 2 EM A2A missile, 2 IR A2A missiles
Sukhoi Su-30MKM 1.00[11] Loaded weight with 56% internal fuel
McDonnell Douglas F-15 1.04[12] Nominally loaded
Mikoyan MiG-29 1.09[13] Full internal fuel, 4 AAMs
Lockheed Martin F-22 >1.09 (1.26 with loaded weight and 50% fuel)[14]
General Dynamics F-16 1.096[citation needed] (1.24 with loaded weight & 50% fuel)
Hawker Siddeley Harrier 1.1[citation needed] VTOL
Eurofighter Typhoon 1.15[15] Interceptor configuration
Sukhoi Su-35 1.30
Space Shuttle 1.5[citation needed] Take-off
Simorgh (rocket) 1.83
Space Shuttle 3 Peak

Jet and rocket engines

Engine Mass Thrust, vacuum Thrust-to-
weight ratio
(kN) (lbf)
MD-TJ42 powered sailplane jet engine[16] 3.85kg (8.48 lb) 0.35 78.7 9.09
RD-0410 nuclear rocket engine[17][18] 2,000 kg (4,400 lb) 35.2 7,900 1.8
Pratt & Whitney J58 jet engine
(Lockheed SR-71 Blackbird)[19][20]
2,722 kg (6,001 lb) 150 34,000 5.6
Rolls-Royce/Snecma Olympus 593
turbojet with reheat
(Concorde)[21]
3,175 kg (7,000 lb) 169.2 38,000 5.4
Pratt & Whitney F119[22] 1,800 kg (4,000 lb) 91 20,500 7.95
PBS TJ40-G1NS jet engine[23] 3.6 kg (7.9 lb) 0.425 96 12
RD-0750 rocket engine
three-propellant mode[24]
4,621 kg (10,188 lb) 1,413 318,000 31.2
RD-0146 rocket engine[25] 260 kg (570 lb) 98 22,000 38.4
Rocketdyne RS-25 rocket engine
(Space Shuttle Main Engine)[26]
3,177 kg (7,004 lb) 2,278 512,000 73.1
RD-180 rocket engine[27] 5,393 kg (11,890 lb) 4,152 78.7
RD-170 rocket engine 9,750 kg (21,500 lb) 7,887 1,773,000 82.5
F-1
(Saturn V first stage)[28]
8,391 kg (18,499 lb) 7,740.5 1,740,100 94.1
NK-33 rocket engine[29] 1,222 kg (2,694 lb) 1,638 368,000 136.7
SpaceX Raptor 3 rocket engine[30] 1,525 kg (3,362 lb) 2,746 617,000 183.6
Merlin 1D rocket engine,
full-thrust version[31][32]
467 kg (1,030 lb) 914 205,500 199.5

Fighter aircraft

Thrust-to-weight ratios, fuel weights, and weights of different fighter planes
Specifications F-15K[a] F-15C MiG-29K MiG-29B JF-17 J-10 F-35A F-35B F-35C F-22 LCA Mk-1
Engines thrust, maximum (N) 259,420 (2) 208,622 (2) 176,514 (2) 162,805 (2) 84,400 (1) 122,580 (1) 177,484 (1) 177,484 (1) 177,484 (1) 311,376 (2) 84,516 (1)
Aircraft mass, empty (kg) 17,010 14,379 12,723 10,900 7,965 09,250 13,290 14,515 15,785 19,673 6,560
Aircraft mass, full fuel (kg) 23,143 20,671 17,963 14,405 11,365 13,044 21,672 20,867 24,403 27,836 9,500
Aircraft mass, max. take-off load (kg) 36,741 30,845 22,400 18,500 13,500 19,277 31,752 27,216 31,752 37,869 13,500
Total fuel mass (kg) 06,133 06,292 05,240 03,505 02,300 03,794 08,382 06,352 08,618 08,163 02,458
T/W ratio, full fuel 1.14 1.03 1.00 1.15 1.07 1.05 0.84 0.87 0.74 1.14 1.07
T/W ratio, max. take-off load 0.72 0.69 0.80 0.89 0.70 0.80 0.57 0.67 0.57 0.84 0.80
  • Table for Jet and rocket engines: jet thrust is at sea level
  • Fuel density used in calculations: 0.803 kg/l
  • For the metric table, the T/W ratio is calculated by dividing the thrust by the product of the full fuel aircraft weight and the acceleration of gravity.
  • J-10's engine rating is of AL-31FN.

See also

Notes

  1. ^ Pratt & Whitney engines
  1. ^ NASA Technical Memorandum 86352 - Some Fighter Aircraft Trends
  2. ^ John P. Fielding, Introduction to Aircraft Design, Section 3.1 (p.21)
  3. ^ Nickell, Paul; Rogoway, Tyler (2016-05-09). "What it's Like to Fly the F-16N Viper, Topgun's Legendary Hotrod". The Drive. Archived from the original on 2019-10-31. Retrieved 2019-10-31.
  4. ^ Daniel P. Raymer, Aircraft Design: A Conceptual Approach, Equations 3.9 and 5.1
  5. ^ a b c George P. Sutton & Oscar Biblarz, Rocket Propulsion Elements (p. 442, 7th edition) "thrust-to-weight ratio F/Wg is a dimensionless parameter that is identical to the acceleration of the rocket propulsion system (expressed in multiples of g0) if it could fly by itself in a gravity-free vacuum"
  6. ^ George P. Sutton & Oscar Biblarz, Rocket Propulsion Elements (p. 442, 7th edition) "The loaded weight Wg is the sea-level initial gross weight of propellant and rocket propulsion system hardware."
  7. ^ "Thrust-to-Earth-weight ratio". The Internet Encyclopedia of Science. Archived from the original on 2008-03-20. Retrieved 2009-02-22.
  8. ^ Northrop Grumman B-2 Spirit
  9. ^ BAE Systems Hawk
  10. ^ "AviationsMilitaires.net — Dassault Rafale C". www.aviationsmilitaires.net. Archived from the original on 25 February 2014. Retrieved 30 April 2018.
  11. ^ Sukhoi Su-30MKM#Specifications .28Su-30MKM.29
  12. ^ "F-15 Eagle Aircraft". About.com:Inventors. Archived from the original on July 9, 2012. Retrieved 2009-03-03.
  13. ^ Pike, John. "MiG-29 FULCRUM". www.globalsecurity.org. Archived from the original on 19 August 2017. Retrieved 30 April 2018.
  14. ^ "AviationsMilitaires.net — Lockheed-Martin F-22 Raptor". www.aviationsmilitaires.net. Archived from the original on 25 February 2014. Retrieved 30 April 2018.
  15. ^ "Eurofighter Typhoon". eurofighter.airpower.at. Archived from the original on 9 November 2016. Retrieved 30 April 2018.
  16. ^ "EASA.E.099 - MD-TJ series engines | EASA". www.easa.europa.eu. Retrieved 2024-11-08.
  17. ^ Wade, Mark. "RD-0410". Encyclopedia Astronautica. Retrieved 2009-09-25.
  18. ^ РД0410. Ядерный ракетный двигатель. Перспективные космические аппараты [RD0410. Nuclear Rocket Engine. Advanced launch vehicles] (in Russian). KBKhA - Chemical Automatics Design Bureau. Archived from the original on 30 November 2010.
  19. ^ "Aircraft: Lockheed SR-71A Blackbird". Archived from the original on 2012-07-29. Retrieved 2010-04-16.
  20. ^ "Factsheets : Pratt & Whitney J58 Turbojet". National Museum of the United States Air Force. Archived from the original on 2015-04-04. Retrieved 2010-04-15.
  21. ^ "Rolls-Royce SNECMA Olympus - Jane's Transport News". Archived from the original on 2010-08-06. Retrieved 2009-09-25. With afterburner, reverser and nozzle ... 3,175 kg ... Afterburner ... 169.2 kN
  22. ^ Military Jet Engine Acquisition, RAND, 2002.
  23. ^ "PBS TJ40-G1NS". PBS Velká Bíteš. Retrieved 20 July 2024.
  24. ^ "Конструкторское бюро химавтоматики" - Научно-исследовательский комплекс / РД0750. [«Konstruktorskoe Buro Khimavtomatiky» - Scientific-Research Complex / RD0750.]. KBKhA - Chemical Automatics Design Bureau. Archived from the original on 26 July 2011.
  25. ^ Wade, Mark. "RD-0146". Encyclopedia Astronautica. Retrieved 2009-09-25.
  26. ^ SSME
  27. ^ "RD-180". Retrieved 2009-09-25.
  28. ^ Encyclopedia Astronautica: F-1
  29. ^ Wade, Mark. "NK-33". Encyclopedia Astronautica. Retrieved 2022-08-24.
  30. ^ Sesnic, Trevor (2022-07-14). "Raptor 1 vs Raptor 2: What did SpaceX change?". Everyday Astronaut. Retrieved 2022-11-07.
  31. ^ Mueller, Thomas (June 8, 2015). "Is SpaceX's Merlin 1D's thrust-to-weight ratio of 150+ believable?". Quora. Retrieved July 9, 2015. The Merlin 1D weighs 1030 pounds, including the hydraulic steering (TVC) actuators. It makes 162,500 pounds of thrust in vacuum. that is nearly 158 thrust/weight. The new full thrust variant weighs the same and makes about 185,500 lbs force in vacuum.
  32. ^ "SpaceX". SpaceX. Retrieved 2022-11-07.

References

  • John P. Fielding. Introduction to Aircraft Design, Cambridge University Press, ISBN 978-0-521-65722-8
  • Daniel P. Raymer (1989). Aircraft Design: A Conceptual Approach, American Institute of Aeronautics and Astronautics, Inc., Washington, DC. ISBN 0-930403-51-7
  • George P. Sutton & Oscar Biblarz. Rocket Propulsion Elements, Wiley, ISBN 978-0-471-32642-7

Read other articles:

Charenton-le-PontNegaraPrancisArondisemenCréteilKantonCharenton-le-PontAntarkomuneCommunautéde communesde Charenton-le-Pont -Saint-MauriceKode INSEE/pos94018 /  Taman umum di Charenton-le-Pont, dekat stasiun metro Charenton-Ecoles. Charenton-le-Pont merupakan sebuah komune di pinggiran tenggara Paris, Prancis. Terletak 6.2 km (3.8 mil) dari pusat kota Paris. Merupakan salah satu kotamadya terpadat di Eropa. Rumah Sakit Psikiatris Charenton terletak di komune tetangga Charenton-Sai...

 

 

Bagian dari seriPendidikan di Indonesia Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi Republik Indonesia Pendidikan anak usia dini TK RA KB Pendidikan dasar (kelas 1–6) SD MI Paket A Pendidikan dasar (kelas 7–9) SMP MTs Paket B Pendidikan menengah (kelas 10–12) SMA MA SMK MAK SMA SMTK SMAK Utama Widya Pasraman Paket C Pendidikan tinggi Perguruan tinggi Akademi Akademi komunitas Institut Politeknik Sekolah tinggi Universitas Lain-lain Madrasah Pesantren Sekolah alam Sekolah ru...

 

 

У этого термина существуют и другие значения, см. Эратосфен (значения). Эратосфе́н Кире́нскийдр.-греч. Ἐρατοσθένης ὁ Κυρηναῖος Имя при рождении др.-греч. Ἐρατοσθένης Дата рождения 276 до н. э.[1][2] Место рождения Кирена Дата смерти 194 до н. э.[2][3][…] Место смер�...

Gabriel Lippmann Jonas Ferdinand Gabriel Lippmann (16 Agustus 1845 – 13 Juli 1921) adalah seorang fisikawan Prancis yang menerima Hadiah Nobel Fisika pada 1908 untuk pembuatan plat foto pertama, dikenal sebagai plat Lippman. Ia diingat untuk penemuan yang menimbulkan dari risetnya medium sensitif warna langsung dalam fotografi. Pranala luar http://www.britannica.com/eb/article?tocId=9048453 Gabriel Lippmann Diarsipkan 2005-04-04 di Wayback Machine. J.P. Pier & J.A. Massard...

 

 

Baltic-German physician This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (January 2022) (Learn how and when to remove this template message) Guido Samson von Himmelstiern, ca 1860 Hermann Guido von Samson-Himmelstjerna; name sometimes given as Guido Samson von Himmelstiern (30 January [O.S. 18] 1809, Korast – 30 January [O.S. 18...

 

 

Peruta v. San Diego CountyCourtUnited States Court of Appeals for the Ninth CircuitFull case nameEdward Peruta et al v. County of San Diego et al.DecidedJune 9, 2016Citation(s)824 F.3d 919Case historyPrior history Peruta v. Cty. of San Diego, 758 F. Supp. 2d 1106 (S.D. Cal. 2010), reversed, 742 F.3d 1144 (9th Cir. 2014) Richards v. Cty. of Yolo, 821 F. Supp. 2d 1169 (E.D. Cal. 2011), reversed, 742 F.3d 1144 (9th Cir. 2014) Subsequent historyCert. denied, 137 S. Ct. 1995 (2017).Court membersh...

Hybrid photovoltaic-thermal solar panels of a SAHP in an experimental installation at Department of Energy at Polytechnic of Milan A solar-assisted heat pump (SAHP) is a machine that combines a heat pump and thermal solar panels and/or PV solar panels in a single integrated system.[1] Typically these two technologies are used separately (or only placing them in parallel) to produce hot water.[2] In this system the solar thermal panel performs the function of the low temperatur...

 

 

العلاقات الألبانية الأمريكية ألبانيا الولايات المتحدة   ألبانيا   الولايات المتحدة تعديل مصدري - تعديل   وُطدت العلاقات بين ألبانيا والولايات المتحدة الأمريكية للمرة الأولى في عام 1912، عقب استقلال ألبانيا عن الإمبرطورية العثمانية، لتنتهي في عام 1939 نتيجة للاح...

 

 

Simone AbatBiographieNaissance 2 novembre 1915ValenceDécès 27 août 1944 (à 28 ans)Romans-sur-IsèreNom de naissance FournierNationalité françaiseActivités Comptable, résistantemodifier - modifier le code - modifier Wikidata Simone Abat, née le 2 novembre 1915 à Valence et morte le 27 août 1944 à Romans-sur-Isère, est une comptable, communiste et résistante au sein des Francs-tireurs et partisans français (FTPF). Elle est tuée en mission. Biographie Simone Louise Fournier ...

Type of amino acid Summary of amino acid catabolism A ketogenic amino acid is an amino acid that can be degraded directly into acetyl-CoA, which is the precursor of ketone bodies and myelin, particularly during early childhood, when the developing brain requires high rates of myelin synthesis.[1] This is in contrast to the glucogenic amino acids, which are converted into glucose. Ketogenic amino acids are unable to be converted to glucose as both carbon atoms in the ketone body are ul...

 

 

Religious site in Jerusalem Temple MountAl-Aqsa (Masjid al-Aqsa)Haram al-SharifAl-Aqsa mosque compoundHar haBayitJerusalem's sacred (or holy) esplanadeAerial view of Al-Aqsa, atop the Temple MountHighest pointElevation740 m (2,430 ft)Coordinates31°46′41″N 35°14′9″E / 31.77806°N 35.23583°E / 31.77806; 35.23583GeographyTemple MountJerusalem Parent rangeJudeanGeologyMountain typeLimestone[1] Part of a series onJerusalem History Timeline ...

 

 

Day to memorialize transphobia victims Transgender Day of RemembranceA Transgender Pride flag on the British Foreign Office, 2018Observed byTransgender community and supportersTypeInternationalCulturalCelebrationsTypically, a TDoR memorial includes a reading of the names of those who died from November 20 of the former year to November 20 of the current year, and may include other actions, such as candlelight vigils, dedicated church services, marches, art shows, food drives and film scr...

This article is about the video game. For the animated motion picture, see Heavy Metal 2000. This article may need to be rewritten to comply with Wikipedia's quality standards. You can help. The talk page may contain suggestions. (September 2013) 2000 video gameHeavy Metal: F.A.K.K. 2Developer(s)Ritual EntertainmentPublisher(s)WW: Gathering of DevelopersEU: Take-Two InteractiveEngineid Tech 3Platform(s)Windows, Mac OS, LinuxReleaseWindowsNA: August 1, 2000[2]EU: September 22, 2000[...

 

 

Setelah diaduk-aduk, natto diletakkan di atas nasi putih Nattō (納豆code: ja is deprecated ) adalah makanan tradisional Jepang yang terbuat dari biji kedelai yang difermentasi dengan Bacillus subtilis,[1] biasanya dimakan untuk sarapan. Sebagai sumber protein dan probiotika yang kaya, nattō dan miso dulunya merupakan sumber gizi utama pada zaman feodal di Jepang. Tidak semua orang menyukai makan nattō karena tidak menyukai bau dan aromanya yang kuat, atau teksturnya yang licin. D...

 

 

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: コルク – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2017年4月) コルクを打ち抜いて作った瓶の栓 コルク(木栓、�...

State government of the United States Government of MassachusettsGreat Seal of the Commonwealth of MassachusettsPolity typePresidential republic Federated stateConstitutionConstitution of MassachusettsLegislative branchNameGeneral CourtTypeBicameralMeeting placeMassachusetts State HouseUpper houseNameSenatePresiding officerKaren Spilka, PresidentLower houseNameHouse of RepresentativesPresiding officerRonald Mariano, SpeakerExecutive branchHead of State and GovernmentTitleGovernorCurrentlyMaur...

 

 

Эту страницу предлагается переименовать в «Канадские прерии».Пояснение причин и обсуждение — на странице Википедия:К переименованию/22 ноября 2017. Пожалуйста, основывайте свои аргументы на правилах именования статей. Не удаляйте шаблон до подведения итога обсуждения....

 

 

Questa voce sugli argomenti imprenditori italiani e politici italiani è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti dei progetti di riferimento 1, 2. Giulio Padulli Deputato del Regno d'ItaliaLegislaturaXXIII-XXIVXXV-XXVIXXVII GruppoparlamentarePPIPNF CollegioCantùunico nazionale Incarichi parlamentari Questore (1º luglio 1920-7 aprile 1921) Segretario (23 marzo 1922-10 dicembre 1923) Sito istituzionale Senatore del Regno...

密西西比州 哥伦布城市綽號:Possum Town哥伦布位于密西西比州的位置坐标:33°30′06″N 88°24′54″W / 33.501666666667°N 88.415°W / 33.501666666667; -88.415国家 美國州密西西比州县朗兹县始建于1821年政府 • 市长罗伯特·史密斯 (民主党)面积 • 总计22.3 平方英里(57.8 平方公里) • 陸地21.4 平方英里(55.5 平方公里) • ...

 

 

Public holiday in the Soviet Union The neutrality of this article is disputed. Relevant discussion may be found on the talk page. Please do not remove this message until conditions to do so are met. (November 2022) (Learn how and when to remove this message) День Великой Октябрьской социалистической революции Day of the Great October Socialist RevolutionOctober Revolution Day in 1977Observed by Soviet Union Bulgaria Cuba ...