Tensor–vector–scalar gravity

Tensor–vector–scalar gravity (TeVeS),[1] developed by Jacob Bekenstein in 2004, is a relativistic generalization of Mordehai Milgrom's Modified Newtonian dynamics (MOND) paradigm.[2][3]

The main features of TeVeS can be summarized as follows:

The theory is based on the following ingredients:

These components are combined into a relativistic Lagrangian density, which forms the basis of TeVeS theory.

Details

MOND[2] is a phenomenological modification of the Newtonian acceleration law. In Newtonian gravity theory, the gravitational acceleration in the spherically symmetric, static field of a point mass at distance from the source can be written as

where is Newton's constant of gravitation. The corresponding force acting on a test mass is

To account for the anomalous rotation curves of spiral galaxies, Milgrom proposed a modification of this force law in the form

where is an arbitrary function subject to the following conditions:

In this form, MOND is not a complete theory: for instance, it violates the law of momentum conservation.

However, such conservation laws are automatically satisfied for physical theories that are derived using an action principle. This led Bekenstein[1] to a first, nonrelativistic generalization of MOND. This theory, called AQUAL (for A QUAdratic Lagrangian) is based on the Lagrangian

where is the Newtonian gravitational potential, is the mass density, and is a dimensionless function.

In the case of a spherically symmetric, static gravitational field, this Lagrangian reproduces the MOND acceleration law after the substitutions and are made.

Bekenstein further found that AQUAL can be obtained as the nonrelativistic limit of a relativistic field theory. This theory is written in terms of a Lagrangian that contains, in addition to the Einstein–Hilbert action for the metric field , terms pertaining to a unit vector field and two scalar fields and , of which only is dynamical. The TeVeS action, therefore, can be written as

The terms in this action include the Einstein–Hilbert Lagrangian (using a metric signature and setting the speed of light, ):

where is the Ricci scalar and is the determinant of the metric tensor.

The scalar field Lagrangian is

where is a constant length, is the dimensionless parameter and an unspecified dimensionless function; while the vector field Lagrangian is

where while is a dimensionless parameter. and are respectively called the scalar and vector coupling constants of the theory. The consistency between the Gravitoelectromagnetism of the TeVeS theory and that predicted and measured by the Gravity Probe B leads to ,[4] and requiring consistency between the near horizon geometry of a black hole in TeVeS and that of the Einstein theory, as observed by the Event Horizon Telescope leads to [5] So the coupling constants read:

The function in TeVeS is unspecified.

TeVeS also introduces a "physical metric" in the form

The action of ordinary matter is defined using the physical metric:

where covariant derivatives with respect to are denoted by

TeVeS solves problems associated with earlier attempts to generalize MOND, such as superluminal propagation. In his paper, Bekenstein also investigated the consequences of TeVeS in relation to gravitational lensing and cosmology.

Problems and criticisms

In addition to its ability to account for the flat rotation curves of galaxies (which is what MOND was originally designed to address), TeVeS is claimed to be consistent with a range of other phenomena, such as gravitational lensing and cosmological observations. However, Seifert[6] shows that with Bekenstein's proposed parameters, a TeVeS star is highly unstable, on the scale of approximately 106 seconds (two weeks). The ability of the theory to simultaneously account for galactic dynamics and lensing is also challenged.[7] A possible resolution may be in the form of massive (around 2eV) neutrinos.[8]

A study in August 2006 reported an observation of a pair of colliding galaxy clusters, the Bullet Cluster, whose behavior, it was reported, was not compatible with any current modified gravity theory.[9]

A quantity [10] probing general relativity (GR) on large scales (a hundred billion times the size of the solar system) for the first time has been measured with data from the Sloan Digital Sky Survey to be[11] (~16%) consistent with GR, GR plus Lambda CDM and the extended form of GR known as theory, but ruling out a particular TeVeS model predicting . This estimate should improve to ~1% with the next generation of sky surveys and may put tighter constraints on the parameter space of all modified gravity theories.

TeVeS appears inconsistent with recent measurements made by LIGO of gravitational waves.[12]

See also

References

  1. ^ a b Bekenstein, J. D. (2004), "Relativistic gravitation theory for the modified Newtonian dynamics paradigm", Physical Review D, 70 (8): 083509, arXiv:astro-ph/0403694, Bibcode:2004PhRvD..70h3509B, doi:10.1103/PhysRevD.70.083509
  2. ^ a b Milgrom, M. (1983), "A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis", The Astrophysical Journal, 270: 365–370, Bibcode:1983ApJ...270..365M, doi:10.1086/161130
  3. ^ Famaey, B.; McGaugh, S. S. (2012), "Modified Newtonian Dynamics (MOND): Observational Phenomenology and Relativistic Extensions", Living Rev. Relativ., 15 (10): 10, arXiv:1112.3960, Bibcode:2012LRR....15...10F, doi:10.12942/lrr-2012-10, ISSN 1433-8351, PMC 5255531, PMID 28163623
  4. ^ Exirifard, Q. (2013), "GravitoMagnetic Field in Tensor-Vector-Scalar Theory", Journal of Cosmology and Astroparticle Physics, JCAP04 (4): 034, arXiv:1111.5210, Bibcode:2013JCAP...04..034E, doi:10.1088/1475-7516/2013/04/034, S2CID 250745786
  5. ^ Exirifard, Q. (2019), "Addendum: GravitoMagnetic field in tensor-vector-scalar theory", Journal of Cosmology and Astroparticle Physics, JCAP05 (5): A01, arXiv:1111.5210, doi:10.1088/1475-7516/2019/05/A01, S2CID 182361144
  6. ^ Seifert, M. D. (2007), "Stability of spherically symmetric solutions in modified theories of gravity", Physical Review D, 76 (6): 064002, arXiv:gr-qc/0703060, Bibcode:2007PhRvD..76f4002S, doi:10.1103/PhysRevD.76.064002, S2CID 29014948
  7. ^ Mavromatos, Nick E.; Sakellariadou, Mairi; Yusaf, Muhammad Furqaan (2009), "Can TeVeS avoid Dark Matter on galactic scales?", Physical Review D, 79 (8): 081301, arXiv:0901.3932, Bibcode:2009PhRvD..79h1301M, doi:10.1103/PhysRevD.79.081301, S2CID 119249051
  8. ^ Angus, G. W.; Shan, H. Y.; Zhao, H. S.; Famaey, B. (2007), "On the Proof of Dark Matter, the Law of Gravity, and the Mass of Neutrinos", The Astrophysical Journal Letters, 654 (1): L13 – L16, arXiv:astro-ph/0609125, Bibcode:2007ApJ...654L..13A, doi:10.1086/510738, S2CID 17977472
  9. ^ Clowe, D.; Bradač, M.; Gonzalez, A. H.; Markevitch, M.; Randall, S. W.; Jones, C.; Zaritsky, D. (2006), "A Direct Empirical Proof of the Existence of Dark Matter", The Astrophysical Journal Letters, 648 (2): L109, arXiv:astro-ph/0608407, Bibcode:2006ApJ...648L.109C, doi:10.1086/508162, S2CID 2897407
  10. ^ Zhang, P.; Liguori, M.; Bean, R.; Dodelson, S. (2007), "Probing Gravity at Cosmological Scales by Measurements which Test the Relationship between Gravitational Lensing and Matter Overdensity", Physical Review Letters, 99 (14): 141302, arXiv:0704.1932, Bibcode:2007PhRvL..99n1302Z, doi:10.1103/PhysRevLett.99.141302, PMID 17930657, S2CID 119672184
  11. ^ Reyes, R.; Mandelbaum, R.; Seljak, U.; Baldauf, T.; Gunn, J. E.; Lombriser, L.; Smith, R. E. (2010), "Confirmation of general relativity on large scales from weak lensing and galaxy velocities", Nature, 464 (7286): 256–258, arXiv:1003.2185, Bibcode:2010Natur.464..256R, doi:10.1038/nature08857, PMID 20220843, S2CID 205219902
  12. ^ Boran, Sibel; Desai, Shantanu; Kahya, Emre; Woodard, Richard (2018), "GW170817 Falsifies Dark Matter Emulators", Physical Review D, 97 (4): 041501, arXiv:1710.06168, Bibcode:2018PhRvD..97d1501B, doi:10.1103/PhysRevD.97.041501, S2CID 119468128

Further reading

Read other articles:

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Build order – news · newspapers · books · scholar · JSTOR (November 2014) (Learn how and when to remove this template message) This article may need to be rewritten to comply with Wikipedia's quality standards. You can help. The talk page may contain suggestion...

 

Chemical compound 25CN-NBOHClinical dataOther namesNBOH-2C-CNLegal statusLegal status UK: Class A Illegal in Hungary Identifiers IUPAC name 4-[2-[(2-hydroxyphenyl)methylamino]ethyl]-2,5-dimethoxybenzonitrile CAS Number1391489-32-9 YPubChem CID90489020ChemSpider58191431UNII32CN2DQE3QChemical and physical dataFormulaC18H20N2O3Molar mass312.369 g·mol−13D model (JSmol)Interactive image SMILES COc1cc(C#N)c(OC)cc1CCNCc2ccccc2O InChI InChI=1S/C18H20N2O3/c1-22-17-10-15(11-19)18(23-2...

 

Questa voce sull'argomento calciatori italiani è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Giulio Rossi Nazionalità  Italia Calcio Ruolo Mediano Carriera Squadre di club1 1923-1929 Parma84 (2) 1 I due numeri indicano le presenze e le reti segnate, per le sole partite di campionato.Il simbolo → indica un trasferimento in prestito.   Modifica dati su Wikidata · Manuale Giulio ...

У этого термина существуют и другие значения, см. Кижи (значения). Объект всемирного наследия ЮНЕСКОПогост Кижи[* 1]Kizhi Pogost[* 2] Страна  Россия Тип Культурный Критерии i, iv, v Ссылка 544 Регион[* 3] Европа Включение 1990 год (14-я сессия) ↑ Название в официальном рус. спи...

 

Pour l’article ayant un titre homophone, voir Septèmes-les-Vallons. Septème Mairie de Septème, la nuit. Administration Pays France Région Auvergne-Rhône-Alpes Département Isère Arrondissement Vienne Intercommunalité Vienne Condrieu Agglomération Maire Mandat Alain Clerc 2020-2026 Code postal 38780 Code commune 38480 Démographie Populationmunicipale 2 143 hab. (2021 ) Densité 99 hab./km2 Géographie Coordonnées 45° 33′ 11″ nord, 5° 00′&...

 

DeuceOpera teatrale AutoreTerrence McNally Titolo originaleDeuce Lingua originaleInglese Prima assoluta6 maggio 2007Magic Box Theatre (New York)   Manuale Deuce è una commedia del drammaturgo statunitense Terrence McNally, debuttata a Broadway nel 2007. Indice 1 Trama 2 Produzioni 3 Note 4 Collegamenti esterni Trama Le anziane ex campionesse di tennis Leona Mullen e Midge Barker assistono insieme ai quarti di finali di un campionato di tennis ed attendono di essere premiate al termine d...

拉尔·巴哈杜尔·夏斯特里第二任印度总理任期1964年6月9日—1966年1月11日总统薩瓦帕利·拉達克里希南前任古爾扎里拉爾·南達继任古爾扎里拉爾·南達印度外交部長任期1964年6月9日—1964年7月18日总理自己前任古爾扎里拉爾·南達继任斯瓦倫·辛格(英语:Swaran Singh)印度內政部長任期1961年4月4日—1963年8月29日总理賈瓦哈拉爾·尼赫魯前任戈文德·巴拉布·潘特(英语:Govind Balla...

 

American football and baseball player (1905–1978) American football player Larry BettencourtPersonal informationBorn:(1905-09-22)September 22, 1905Newark, California, U.S.Died:September 15, 1978(1978-09-15) (aged 72)New Orleans, Louisiana, U.S.Height:5 ft 7 in (1.70 m)Weight:187 lb (85 kg)Career informationCollege:Saint Mary'sPosition:Center, endCareer history Green Bay Packers (1933) Career highlights and awards Consensus All-American (1927) Third-team All-Ame...

 

Israeli economist Refael (Rafi) Benvenisti Refael (Rafi) Benvenisti (Hebrew: רפאל (רפי) בנבנשתי, born in 1937), an Israeli economist, was the co-chairman of Israel Palestine Center for Research and Information (IPCRI) for many years and is now a shareholder of the organization.[1] IPCRI is dedicated to the resolution of the Israeli-Palestinian conflict on the basis of the two-states for two peoples solution. Biography He was active in the economic development field in th...

American singer-songwriter and actor (born 1949) This article is about the singer and actor. For the actor and acting teacher, see Thomas G. Waites. Tom WaitsWaits c. 1974–75BornThomas Alan Waits (1949-12-07) December 7, 1949 (age 74)Pomona, California, U.S.OccupationsMusiciancomposersongwriteractorYears active1969–presentSpouse Kathleen Brennan ​(m. 1980)​Children3Musical careerGenresExperimentalrockbluesjazzInstrument(s)VocalsguitarpianoharmoniumDi...

 

Arduino-certified single-board computer Intel Galileo Gen. 1Intel Galileo Gen. 1DeveloperIntel CorporationTypeSingle-board computerRelease date17 October 2013[1][2]Introductory priceUS$70Discontinued19 June 2017 (2017-06-19)[3][4]Operating systemLinux (Yocto Project based Linux)CPUIntel Quark X1000 400 MHzMemory256 MBStorageMicro SD card slot(Micro SD or SDHC card)Power15 WWebsitewww.intel.com Intel Galileo Gen. 2Intel Galileo Gen. 2Dev...

 

Pipit pelangi Chloebia gouldiae Adult red-headed maleStatus konservasiRisiko rendahIUCN22719744 TaksonomiKerajaanAnimaliaFilumChordataKelasAvesOrdoPasseriformesFamiliPasseridaeGenusChloebiaSpesiesChloebia gouldiae Gould, 1844 Tata namaSinonim takson Amadina gouldiae Gould, 1844 Poephila mirabilis Des Murs Poephila armitiana Ramsay Chloebia gouldiae (Gould, 1844) [1]DistribusiDistribution EndemikAustralia lbs Pipit Gouldian ( Chloebia gouldiae ), juga dikenal sebagai Pipit Gould atau P...

1990 novel by Walter Mosley For the film, see Devil in a Blue Dress (film). For the song, see Devil with a Blue Dress On. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Devil in a Blue Dress – news · newspapers · books · scholar · JSTOR (December 2009) (Learn how and when to remove this message) Devil in a ...

 

Ahmad Pairin Wali Kota Metro ke-4Masa jabatan17 Februari 2016 – 17 Februari 2021PresidenJoko WidodoGubernurMuhammad Ridho FicardoDidik Suprayitno (Pjs.)Boytenjuri (Pj.)Arinal DjunaidiWakilDjohanPendahuluLukman HakimAchmad Chrisna Putra (Pj.)PenggantiWahdiBupati Lampung Tengah ke-14Masa jabatan2010–2015PresidenSusilo Bambang YudhoyonoJoko WidodoGubernurSjachroedin Zainal PagaralamMuhammad Ridho FicardoWakilMustafaPendahuluAndy Achmad Sampurna JayaPenggantiEdarwan (Pj.)Must...

 

PK-35 VantaaCalcio Segni distintiviUniformi di gara Casa Trasferta Colori sociali Rosso, nero Dati societariCittàVantaa Nazione Finlandia ConfederazioneUEFA Federazione SPL/FBF Fondazione1935 Presidente Markku Hynninen Allenatore Pasi Pihamaa StadioMyyrmäen jalkapallostadion(4 600 posti) Sito webwww.pk35vantaa.fi PalmarèsSi invita a seguire il modello di voce Il PK-35 Vantaa è una società calcistica finlandese con sede nella città di Vantaa. Nella stagione 2016 ha giocato nell...

Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article relatif à la religion doit être recyclé (août 2022). Motif : L'essentiel de l'article ne traite pas du sujet ; pas de structure ni sources Améliorez-le, discutez des points à améliorer ou précisez les sections à recycler en utilisant {{section à recycler}}. Répartition du christianisme dans le monde. La chrétienté, avec une minuscule, désigne le monde chrétien, notion regroupa...

 

Retail business This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Professional audio store – news · newspapers · books · scholar · JSTOR (January 2018) (Learn how and when to remove this message) This photo illustrates some of the professional sound reinforcement system equipment which is sold or rented at pro...

 

Disambiguazione – Racine rimanda qui. Se stai cercando altri significati, vedi Racine (disambigua). Jean Racine Jean Racine ([ʒɑ̃ ʁaˈsin]; La Ferté-Milon, 22 dicembre 1639 – Parigi, 21 aprile 1699) è stato un drammaturgo e scrittore francese. Racine fu il massimo esponente, assieme a Pierre Corneille, del teatro tragico francese del Seicento. Indice 1 Biografia 2 Temi delle tragedie 3 Critica 4 Opere 4.1 Tragedie 4.2 Commedie 5 Nei media 6 Note 7 Bibliografia 8 Altri proge...

48.2002516.372758333333Koordinaten: 48° 12′ 0,9″ N, 16° 22′ 21,9″ O Universal Edition Aktiengesellschaft Logo Rechtsform Aktiengesellschaft Gründung 1901 Sitz Wien, Österreich Leitung Johann Juranek, Astrid Koblanck, Stefan Ragg Branche Musikverlag Website www.universaledition.com Universal Edition AG (häufig mit UE abgekürzt) ist ein 1901 gegründeter österreichischer Musikverlag mit Hauptsitz[1] am Karlsplatz 6 in Wien. Inhaltsverzeichnis...

 

Czech judoka (born 1990) Lukáš KrpálekKrpálek at the 2016 OlympicsPersonal informationNicknamePredatorBorn (1990-11-15) 15 November 1990 (age 33)Jihlava, Czechoslovakia[1]OccupationJudokaHeight198 cm (6 ft 6 in)[2]Weight113 kg (249 lb)SportCountry Czech RepublicSportJudoWeight class‍–‍100 kg, +100 kgClubUSK Judo PragCoached byPetr Lacina[3][4]Achievements and titlesOlympic Games (2016, 2020)Worl...