Scalar theories of gravitation

Scalar theories of gravitation are field theories of gravitation in which the gravitational field is described using a scalar field, which is required to satisfy some field equation.

Note: This article focuses on relativistic classical field theories of gravitation. The best known relativistic classical field theory of gravitation, general relativity, is a tensor theory, in which the gravitational interaction is described using a tensor field.

Newtonian gravity

The prototypical scalar theory of gravitation is Newtonian gravitation. In this theory, the gravitational interaction is completely described by the potential , which is required to satisfy the Poisson equation (with the mass density acting as the source of the field). To wit:

, where

  • G is the gravitational constant and
  • is the mass density.

This field theory formulation leads directly to the familiar law of universal gravitation, .

Nordström's theories of gravitation

The first attempts to present a relativistic (classical) field theory of gravitation were also scalar theories. Gunnar Nordström created two such theories.[1]

Nordström's first idea (1912) was to simply replace the divergence operator in the field equation of Newtonian gravity with the d'Alembertian operator . This gives the field equation

.

However, several theoretical difficulties with this theory quickly arose, and Nordström dropped it.

A year later, Nordström tried again, presenting the field equation

,

where is the trace of the stress–energy tensor.

Solutions of Nordström's second theory are conformally flat Lorentzian spacetimes. That is, the metric tensor can be written as , where

  • ημν is the Minkowski metric, and
  • is a scalar which is a function of position.

This suggestion signifies that the inertial mass should depend on the scalar field.

Nordström's second theory satisfies the weak equivalence principle. However:

  • The theory fails to predict any deflection of light passing near a massive body (contrary to observation)
  • The theory predicts an anomalous perihelion precession of Mercury, but this disagrees in both sign and magnitude with the observed anomalous precession (the part which cannot be explained using Newtonian gravitation).

Despite these disappointing results, Einstein's critiques of Nordström's second theory played an important role in his development of general relativity.

Einstein's scalar theory

In 1913, Einstein (erroneously) concluded from his hole argument that general covariance was not viable.[2] Inspired by Nordström's work, he proposed his own scalar theory.[3] This theory employs a massless scalar field coupled to the stress–energy tensor, which is the sum of two terms. The first,

represents the stress–momentum–energy of the scalar field itself. The second represents the stress-momentum-energy of any matter which may be present:

where is the velocity vector of an observer, or tangent vector to the world line of the observer. (Einstein made no attempt, in this theory, to take account of possible gravitational effects of the field energy of the electromagnetic field.)

Unfortunately, this theory is not diffeomorphism covariant. This is an important consistency condition, so Einstein dropped this theory in late 1914.[4] Associating the scalar field with the metric leads to Einstein's later conclusions that the theory of gravitation he sought could not be a scalar theory. Indeed, the theory he finally arrived at in 1915, general relativity, is a tensor theory, not a scalar theory, with a 2-tensor, the metric, as the potential. Unlike his 1913 scalar theory, it is generally covariant, and it does take into account the field energy–momentum–stress of the electromagnetic field (or any other nongravitational field).

Additional variations

  • Kaluza–Klein theory involves the use of a scalar gravitational field in addition to the electromagnetic field potential in an attempt to create a five-dimensional unification of gravity and electromagnetism. Its generalization with a 5th variable component of the metric that leads to a variable gravitational constant was first given by Pascual Jordan.[5][6]
  • Brans–Dicke theory is a scalar-tensor theory, not a scalar theory, meaning that it represents the gravitational interaction using both a scalar field and a tensor field. We mention it here because one of the field equations of this theory involves only the scalar field and the trace of the stress–energy tensor, as in Nordström's theory. Moreover, the Brans–Dicke theory is equal to the independently derived theory of Jordan (hence it is often referred to as the Jordan-Brans–Dicke or JBD theory). The Brans–Dicke theory couples a scalar field with the curvature of space-time and is self-consistent and, assuming appropriate values for a tunable constant, this theory has not been ruled out by observation. The Brans–Dicke theory is generally regarded as a leading competitor of general relativity, which is a pure tensor theory. However, the Brans–Dicke theory seems to need too high a parameter, which favours general relativity).[5]
  • Zee combined the idea of the BD theory with the Higgs-Mechanism of Symmetry Breakdown for mass generation, which led to a scalar-tensor theory with Higgs field as scalar field, in which the scalar field is massive (short-ranged). An example of this theory was proposed by H. Dehnen and H. Frommert 1991, parting from the nature of Higgs field interacting gravitational- and Yukawa (long-ranged)-like with the particles that get mass through it.[7][8][9]
  • The Watt–Misner theory (1999) is a recent example of a scalar theory of gravitation. It is not intended as a viable theory of gravitation (since, as Watt and Misner point out, it is not consistent with observation), but as a toy theory which can be useful in testing numerical relativity schemes. It also has pedagogical value.[10]

See also

References

  1. ^ Norton, John D. (1992). "Einstein, Nordström and the early demise of scalar, Lorentz-covariant theories of gravitation" (PDF). Archive for History of Exact Sciences. 45 (1): 17–94. doi:10.1007/bf00375886. Retrieved 20 April 2015.
  2. ^ Stachel, John (2014). "The Hole Argument and Some Physical and Philosophical Implications". Living Reviews in Relativity. 17 (1): 1. Bibcode:2014LRR....17....1S. doi:10.12942/lrr-2014-1. PMC 5253803. PMID 28163626. Retrieved 20 April 2015.
  3. ^ Janssen, Michel (2007). "What did Einstein know and when did He know it? A Besso Memo Dated August 1913". Boston Studies in the Philosophy of Science. 250: 787–837.
  4. ^ Norton, John (1984). "How Einstein found his field equations: 1912-1915" (PDF). Historical Studies in the Physical Sciences: 253–316. doi:10.2307/27757535. JSTOR 27757535.
  5. ^ a b Brans, Carl H. (2005). "The roots of scalar-tensor theory: an approximate history". arXiv:gr-qc/0506063.
  6. ^ Goenner, Hubert (2012). "Some remarks on the genesis of scalar-tensor theories". General Relativity and Gravitation. 44 (8): 2077–2097. arXiv:1204.3455. Bibcode:2012GReGr..44.2077G. doi:10.1007/s10714-012-1378-8.
  7. ^ Dehnen, H.; Frommert, H. (1990). "Scalar gravity and Higgs potential". International Journal of Theoretical Physics. 29 (4): 361–370. Bibcode:1990IJTP...29..361D. doi:10.1007/BF00674437.
  8. ^ Dehnen, H.; Frommert, H. (1991). "Higgs-Field Gravity within the Standard Model". International Journal of Theoretical Physics. 30 (7): 995–998. Bibcode:1991IJTP...30..985D. doi:10.1007/bf00673991.
  9. ^ Dehnen, H.; Frommert, H.; Ghaboussi, F. (1992). "Higgs field and a new scalar-tensor theory of gravity". International Journal of Theoretical Physics. 31 (1): 109–114. Bibcode:1992IJTP...31..109D. doi:10.1007/BF00674344.
  10. ^ Watt, Keith & Misner, Charles W. (1999). "Relativistic Scalar Gravity: A Laboratory for Numerical Relativity". arXiv:gr-qc/9910032.
  • Goenner, Hubert F. M., "On the History of Unified Field Theories"; Living Rev. Relativ. 7(2), 2004, lrr-2004-2. Retrieved August 10, 2005.
  • Ravndal, Finn (2004). "Scalar Gravitation and Extra Dimensions". arXiv:gr-qc/0405030.
  • P. Jordan, Schwerkraft und Weltall, Vieweg (Braunschweig) 1955.

Read other articles:

Kontributor utama artikel ini tampaknya memiliki hubungan dekat dengan subjek. Artikel ini mungkin memerlukan perapian untuk mematuhi kebijakan konten Wikipedia, terutama dalam hal sudut pandang netral. Silakan dibahas lebih lanjut di halaman pembicaraan artikel ini. (Oktober 2023) (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) UkiramaLogo UkiramaIndustriEnterprise resource planningTentang PerusahaanSitus Webhttps://ukirama.com/PendiriKevin Eka Putra Ignatius Monthy Wang...

 

Sir Charles Antony Richard HoareSir Charles Antony Richard Hoare giving a conference at EPFL on 20 June 2011Lahir11 Januari 1934 (umur 90)Colombo, British CeylonTempat tinggalCambridgeAlmamaterOxford UniversityMoscow State UniversityDikenal atasQuicksortHoare logicCSPPenghargaanACM Turing Award (1980) Harry H. Goode Memorial Award (1981)Karier ilmiahBidangIlmuwan komputerInstitusiElliott BrothersQueen's University BelfastOxford UniversityMoscow State UniversityMicrosoft ResearchMahasisw...

 

Rodhial Huda Wakil Bupati Natuna ke-5PetahanaMulai menjabat 24 Mei 2021PresidenJoko WidodoGubernurAnsar AhmadBupatiWan Siswandi PendahuluNgesti Yuni SupraptiPenggantiPetahana Informasi pribadiLahir3 Agustus 1967 (umur 56)Sedanau, Bunguran Barat, Natuna, Riau (sekarang Kepulauan Riau), IndonesiaKebangsaanIndonesiaPartai politikHanura[1]Suami/istriHadijahTempat tinggalJl. H. Adam Malik, RT 003/RW 004 Bandarsyah, Bunguran Timur, NatunaAlma materPoliteknik Ilmu Pelayaran Sema...

Pour les articles homonymes, voir Argentin. Moreno ArgentinMoreno Argentin en 1987InformationsSurnom Il MaestroNaissance 17 décembre 1960 (63 ans)San Donà di PiaveNationalité italienneÉquipes amateurs 1979SC La Nuova Baggio-San Siro01.1980-09.1980SC La Nuova Baggio-CappÉquipes professionnelles 10.1980-12.1980Mobili San Giacomo-Benotto 1981-1982 Sammontana-Benotto1983-1984 Sammontana-Campagnolo1985-1986 Sammontana-Bianchi1987-1989 Gewiss-Bianchi 1990-1992 Ariostea 1993 Mecair-Ballan...

 

Ancient Greek coalition Coin of the Epirote League, depicting Zeus (left) and a lighting with the word ΑΠΕΙΡΩΤΑΝ – Epirotes (right) The Epirote League (Epirote: Κοινὸν Ἀπειρωτᾶν, Koinòn Āpeirōtân; Attic: Κοινὸν Ἠπειρωτῶν, Koinòn Ēpeirōtôn) was an ancient Greek coalition, or koinon,[1] of Epirote tribes.[2] History Depicting Dioni and Zeus (left) and a bull (right) The coalition was established between 370 and 320 BC (first...

 

Coppa Mitropa 1955 Competizione Coppa Mitropa Sport Calcio Edizione 15ª Date dal 29 giugno 1955al 4 agosto 1955 Luogo Europa Partecipanti 10 Nazioni 5 Risultati Vincitore Vörös Lobogó(1º titolo) Secondo UDA Praha Statistiche Miglior marcatore János Molnár Nándor Hidegkuti (9) Incontri disputati 20 Gol segnati 98 (4,9 per incontro) Cronologia della competizione Zentropa Cup 1951 1956 Manuale La Coppa Mitropa 1955 fu la quindicesima edizione del torneo, la prima del d...

Sports organization The St Rule ClubLogo of The St Rule ClubClubhouse of The St Rule Club, which overlooks the 18th green on the Old Course.Location within FifeFormation1898Headquarters12 The LinksLocationSt Andrews, ScotlandCoordinates56°20′34″N 2°48′12″W / 56.34276°N 2.80328°W / 56.34276; -2.80328Membership (1896) 186Websitethestruleclub.co.uk Listed Building – Category C(S)Official name12 The Links, St Rule Club with Boundary Wall and Railings[1 ...

 

Lawrence Demetric Johnson (lahir 14 Maret 1969) adalah seorang mantan pemain bola basket berkebangsaan Amerika Serikat yang menghabiskan karier profesionalnya di National Basketball Association (NBA) dengan Charlotte Hornets dan New York Knicks. Dia bermain sebagai power forward karena kekuatannya. Larry JohnsonNo. 2 – Charlotte HornetsPosisiSmall forward, Power forwardLigaNBAInformasi pribadiLahir4 Maret 1969 (umur 55)Tyler, TexasKebangsaanAmerika SerikatTinggi6 ft 6 ...

 

ShōgunLogoGenre Drama sejarah Militer Pembuat Rachel Kondo Justin Marks BerdasarkanShōgunoleh James ClavellPemeran Hiroyuki Sanada Cosmo Jarvis Anna Sawai Tadanobu Asano Takehiro Hira Tommy Bastow Fumi Nikaido Penata musik Atticus Ross Leopold Ross Nick Chuba Negara asalAmerika SerikatBahasa asli Inggris Jepang Jmlh. episode10[1]ProduksiProduser eksekutif Edward L. McDonnell Justin Marks Rachel Kondo Andrew Macdonald Allon Reich Michael De Luca Michaela Clavell Produser Jamie...

Частина серії проФілософіяLeft to right: Plato, Kant, Nietzsche, Buddha, Confucius, AverroesПлатонКантНіцшеБуддаКонфуційАверроес Філософи Епістемологи Естетики Етики Логіки Метафізики Соціально-політичні філософи Традиції Аналітична Арістотелівська Африканська Близькосхідна іранська Буддій...

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (فبراير 2016) الجدول الزمني لتكنولوجيا الاتصالات قبل 3500 ق.م - أجريت الاتصالات من خلال لوحات من قبائل السكان الأصليين. 350...

 

  لمعانٍ أخرى، طالع مروي (توضيح). مروي (مدينة تاريخية) موقع اليونيسكو للتراث العالمي الدولة السودان النوع ثقافي المعايير ii, iii, vi, v رقم التعريف 1336 المنطقة مواقع التراث العالمي الإحداثيات 16°56′07″N 33°45′03″E / 16.935138888889°N 33.75075°E / 16.935138888889; 33.75075   تاريخ الاعتماد ...

Edward Bramwell ClarkeBorn(1874-01-31)31 January 1874Yokohama, JapanDied28 April 1934(1934-04-28) (aged 60)Kobe, JapanNationalityEnglishOccupationEducator Edward Bramwell Clarke (31 January 1874 – 28 April 1934)[1] was an educator in Meiji period Japan, who is credited with introducing the sport of rugby to Japan. Early life Clarke was born at the treaty port of Yokohama, the son of a baker. He graduated with degrees in law and literature from Corpus Christi College, Cambridge...

 

This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (June 2020) (Learn how and when to remove this message) 2006 American filmApocalypse OzWritten byBen TelfordProduced byBradley WardenCinematographyKev RobertsonProductioncompanyCineClash ProductionsRelease date 2006 (2006) Running time25 minutesCountryUnited StatesLanguageE...

 

Disambiguazione – Se stai cercando altri significati, vedi Aquileia (disambigua). Aquileiacomune(IT) Aquileia(FUR) Aquilee[1] Aquileia – VedutaLa basilica patriarcale di Santa Maria Assunta LocalizzazioneStato Italia Regione Friuli-Venezia Giulia Provincia Udine AmministrazioneSindacoEmanuele Zorino (Centrodestra) dal 27-5-2019 Data di istituzione5-1-1921 TerritorioCoordinate45°46′N 13°22′E45°46′N, 13°22′E (Aquileia) Altitudine5 m ...

Hilltop RoadGeneral informationLocationGarrett Road & Hilltop RoadUpper Darby Township, PennsylvaniaCoordinates39°57′21″N 75°16′22″W / 39.9559°N 75.2729°W / 39.9559; -75.2729Owned bySEPTAPlatforms2 side platformsTracks2ConstructionStructure typeOpen sheltersHistoryElectrifiedOverhead linesServices Preceding station SEPTA Following station Beverly Boulevardtoward Orange Street Route 101 Avon Roadtoward 69th Street T.C. Beverly Boulevardtoward Sharon Hill...

 

خلل التنسج الكلوي Diagram of multicystic dysplastic kidneyDiagram of multicystic dysplastic kidney تسميات أخرى Multicystic renal dysplasia[1] معلومات عامة الاختصاص علم الوراثة الطبية  من أنواع مرض الكلى الكيسي  الأسباب الأسباب Due to atresia at 10 weeks gestation[2] الإدارة التشخيص Ultrasound العلاج Nephrectomy, if needed تعديل مصدري - تعد...

 

Final match of 1901 English football knockout competition Football match1901 FA Cup finalMatch programmeEvent1900–01 FA Cup Sheffield United Tottenham Hotspur Tottenham Hotspur won after a replayFinal Sheffield United Tottenham Hotspur 2 2 Date20 April 1901 (1901-04-20)VenueCrystal Palace, LondonRefereeArthur Kingscott (Long Eaton, Derbyshire)Attendance110,820WeatherFineReplay Sheffield United Tottenham Hotspur 1 3 Date27 April 1901 (1901-04-27)VenueBurnden Par...

Measure of dot density dpi redirects here. For pixel density, see Pixel density. For other uses, see DPI. A close-up of the dots produced by an inkjet printer at draft quality. Actual size is approximately 1⁄4 by 1⁄4 inch (6 by 6 mm). Individual coloured droplets of ink are visible; this sample is about 150 DPI. Dots per inch (DPI, or dpi[1]) is a measure of spatial printing, video or image scanner dot density, in particular the number of individual dots that can be p...

 

2022年冬季奥林匹克运动会波多黎各代表團波多黎各旗帜IOC編碼PURNOC波多黎各奥林匹克委员会網站www.copur.pr(西班牙文)2022年冬季奥林匹克运动会(北京)2022年2月4日至2月20日運動員2參賽項目2个大项旗手开幕式:William Flaherty(高山滑雪)和Kellie Delka(钢架雪车)[1]闭幕式:Kellie Delka(钢架雪车)[2]历届奥林匹克运动会参赛记录(总结)夏季奥林匹克运动会1948195...