Picture
Name
Schläfli symbol
Vertex/Face configuration
exact dihedral angle (radians)
dihedral angle – exact in bold, else approximate (degrees)
Platonic solids (regular convex)
Tetrahedron
{3,3}
(3.3.3)
arccos (1 / 3 )
70.529°
Hexahedron or Cube
{4,3}
(4.4.4)
arccos (0) = π / 2
90°
Octahedron
{3,4}
(3.3.3.3)
arccos (-1 / 3 )
109.471°
Dodecahedron
{5,3}
(5.5.5)
arccos (-√5 / 5 )
116.565°
Icosahedron
{3,5}
(3.3.3.3.3)
arccos (-√5 / 3 )
138.190°
Kepler–Poinsot solids (regular nonconvex)
Small stellated dodecahedron
{5 / 2 ,5}
(5 / 2 .5 / 2 .5 / 2 .5 / 2 .5 / 2 )
arccos (-√5 / 5 )
116.565°
Great dodecahedron
{5,5 / 2 }
(5.5.5.5.5) / 2
arccos (√5 / 5 )
63.435°
Great stellated dodecahedron
{5 / 2 ,3}
(5 / 2 .5 / 2 .5 / 2 )
arccos (√5 / 5 )
63.435°
Great icosahedron
{3,5 / 2 }
(3.3.3.3.3) / 2
arccos (√5 / 3 )
41.810°
Quasiregular polyhedra (Rectified regular )
Tetratetrahedron
r{3,3}
(3.3.3.3)
arccos (-1 / 3 )
109.471°
Cuboctahedron
r{3,4}
(3.4.3.4)
arccos (-√3 / 3 )
125.264°
Icosidodecahedron
r{3,5}
(3.5.3.5)
arccos
-->
(
− − -->
1
15
75
+
30
5
)
{\displaystyle \arccos {\left(-{\frac {1}{15}}{\sqrt {75+30{\sqrt {5}}}}\right)}}
142.623°
Dodecadodecahedron
r{5 / 2 ,5}
(5.5 / 2 .5.5 / 2 )
arccos (-√5 / 5 )
116.565°
Great icosidodecahedron
r{5 / 2 ,3}
(3.5 / 2 .3.5 / 2 )
arccos
-->
(
1
15
75
+
30
5
)
{\displaystyle \arccos {\left({\frac {1}{15}}{\sqrt {75+30{\sqrt {5}}}}\right)}}
37.377°
Ditrigonal polyhedra
Small ditrigonal icosidodecahedron
a{5,3}
(3.5 / 2 .3.5 / 2 .3.5 / 2 )
Ditrigonal dodecadodecahedron
b{5,5 / 2 }
(5.5 / 3 .5.5 / 3 .5.5 / 3 )
Great ditrigonal icosidodecahedron
c{3,5 / 2 }
(3.5.3.5.3.5) / 2
Hemipolyhedra
Tetrahemihexahedron
o{3,3}
(3.4.3 / 2 .4)
arccos (√3 / 3 )
54.736°
Cubohemioctahedron
o{3,4}
(4.6.4 / 3 .6)
arccos (√3 / 3 )
54.736°
Octahemioctahedron
o{4,3}
(3.6.3 / 2 .6)
arccos (1 / 3 )
70.529°
Small dodecahemidodecahedron
o{3,5}
(5.10.5 / 4 .10)
arccos
-->
(
1
15
195
− − -->
6
5
)
{\displaystyle \arccos {\left({\frac {1}{15}}{\sqrt {195-6{\sqrt {5}}}}\right)}}
26.058°
Small icosihemidodecahedron
o{5,3}
(3.10.3 / 2 .10)
arccos (-√5 / 5 )
116.56°
Great dodecahemicosahedron
o{5 / 2 ,5}
(5.6.5 / 4 .6)
Small dodecahemicosahedron
o{5,5 / 2 }
(5 / 2 .6.5 / 3 .6)
Great icosihemidodecahedron
o{5 / 2 ,3}
(3.10 / 3 .3 / 2 .10 / 3 )
Great dodecahemidodecahedron
o{3,5 / 2 }
(5 / 2 .10 / 3 .5 / 3 .10 / 3 )
Quasiregular dual solids
Rhombic hexahedron (Dual of tetratetrahedron)
—
V(3.3.3.3)
arccos (0) = π / 2
90°
Rhombic dodecahedron (Dual of cuboctahedron)
—
V(3.4.3.4)
arccos (-1 / 2 ) = 2π / 3
120°
Rhombic triacontahedron (Dual of icosidodecahedron)
—
V(3.5.3.5)
arccos (-√5 +1/ 4 ) = 4π / 5
144°
Medial rhombic triacontahedron (Dual of dodecadodecahedron)
—
V(5.5 / 2 .5.5 / 2 )
arccos (-1 / 2 ) = 2π / 3
120°
Great rhombic triacontahedron (Dual of great icosidodecahedron)
—
V(3.5 / 2 .3.5 / 2 )
arccos (√5 -1/ 4 ) = 2π / 5
72°
Duals of the ditrigonal polyhedra
Small triambic icosahedron (Dual of small ditrigonal icosidodecahedron)
—
V(3.5 / 2 .3.5 / 2 .3.5 / 2 )
Medial triambic icosahedron (Dual of ditrigonal dodecadodecahedron)
—
V(5.5 / 3 .5.5 / 3 .5.5 / 3 )
Great triambic icosahedron (Dual of great ditrigonal icosidodecahedron)
—
V(3.5.3.5.3.5) / 2
Duals of the hemipolyhedra
Tetrahemihexacron (Dual of tetrahemihexahedron)
—
V(3.4.3 / 2 .4)
π − π / 2
90°
Hexahemioctacron (Dual of cubohemioctahedron)
—
V(4.6.4 / 3 .6)
π − π / 3
120°
Octahemioctacron (Dual of octahemioctahedron)
—
V(3.6.3 / 2 .6)
π − π / 3
120°
Small dodecahemidodecacron (Dual of small dodecahemidodecacron)
—
V(5.10.5 / 4 .10)
π − π / 5
144°
Small icosihemidodecacron (Dual of small icosihemidodecacron)
—
V(3.10.3 / 2 .10)
π − π / 5
144°
Great dodecahemicosacron (Dual of great dodecahemicosahedron)
—
V(5.6.5 / 4 .6)
π − π / 3
120°
Small dodecahemicosacron (Dual of small dodecahemicosahedron)
—
V(5 / 2 .6.5 / 3 .6)
π − π / 3
120°
Great icosihemidodecacron (Dual of great icosihemidodecacron)
—
V(3.10 / 3 .3 / 2 .10 / 3 )
π − 2π / 5
72°
Great dodecahemidodecacron (Dual of great dodecahemidodecacron)
—
V(5 / 2 .10 / 3 .5 / 3 .10 / 3 )
π − 2π / 5
72°