A Synergistic system (or S-system )[ 1] is a collection of ordinary nonlinear differential equations
d
x
i
d
t
=
α
i
∏
j
=
1
n
+
m
x
i
g
i
j
−
β
j
∏
j
=
1
n
+
m
x
i
h
i
j
(
i
=
1
,
.
.
.
,
n
)
{\displaystyle {\frac {dx_{i}}{dt}}=\alpha _{i}\prod _{j=1}^{n+m}x_{i}^{g_{ij}}-\beta _{j}\prod _{j=1}^{n+m}x_{i}^{h_{ij}}~~~~~(i=1,...,n)}
where the
x
i
{\displaystyle x_{i}}
are positive real,
α
i
{\displaystyle \alpha _{i}}
and
β
i
{\displaystyle \beta _{i}}
are non-negative real, called the rate constant (or, kinetic rates ) and
g
i
j
{\displaystyle g_{ij}}
and
h
i
j
{\displaystyle h_{ij}}
are real exponential, called kinetic orders . These terms are based on the chemical equilibrium [ 2]
One variable S-system
In the case of
n
=
1
(
i
=
1
)
{\displaystyle n=1(i=1)}
and
m
=
0
{\displaystyle m=0}
, the given S-system equation can be written as
d
x
d
t
=
α
x
g
−
β
x
h
{\displaystyle \ {\frac {dx}{dt}}=\alpha x^{g}-\beta x^{h}\ }
Under the non-zero steady condition,
d
x
0
d
t
=
0
{\displaystyle {\frac {dx_{0}}{dt}}=0}
, the following non-linear equation can be transformed into an ordinary differential equation (ODE).
Transformation one variable S-system into a first-order ODE
Let
x
=
e
log
x
=
e
y
{\displaystyle x=e^{\operatorname {log} x}=e^{y}}
(with
x
0
=
e
y
0
{\displaystyle x_{0}=e^{y_{0}}}
) Then, given a one-variable S-system is
d
y
d
t
=
α
e
(
g
−
1
)
y
−
β
e
(
h
−
1
)
y
{\displaystyle {\frac {dy}{dt}}=\alpha e^{(g-1)y}-\beta e^{(h-1)y}}
Apply a non-zero steady condition to the given equation
0
=
d
y
0
d
t
=
α
e
(
g
−
1
)
y
0
−
β
e
(
h
−
1
)
y
0
{\displaystyle 0={\frac {dy_{0}}{dt}}=\alpha e^{(g-1)y_{0}}-\beta e^{(h-1)y_{0}}}
, or equivalently
α
e
(
g
−
1
)
y
0
=
β
e
(
h
−
1
)
y
0
{\displaystyle \alpha e^{(g-1)y_{0}}=\beta e^{(h-1)y_{0}}}
Thus,
y
0
=
log
β
−
log
α
g
−
h
{\displaystyle y_{0}={\frac {\operatorname {log} \beta -\operatorname {log} \alpha }{g-h}}}
(or,
x
0
=
(
β
α
)
1
g
−
h
{\displaystyle x_{0}=\left({\frac {\beta }{\alpha }}\right)^{\frac {1}{g-h}}}
)
If
d
y
d
t
{\displaystyle {\frac {dy}{dt}}}
can be approximated around
y
=
y
0
{\displaystyle y=y_{0}}
, remaining the first two terms,
d
y
d
t
≃
α
e
(
g
−
1
)
y
0
+
α
e
(
g
−
1
)
y
0
(
g
−
1
)
(
y
−
y
0
)
−
β
e
(
g
−
1
)
y
0
−
β
e
(
h
−
1
)
y
0
(
h
−
1
)
(
y
−
y
0
)
{\displaystyle {\frac {dy}{dt}}\simeq \alpha e^{(g-1)y_{0}}+\alpha e^{(g-1)y_{0}}(g-1)(y-y_{0})-\beta e^{(g-1)y_{0}}-\beta e^{(h-1)y_{0}}(h-1)(y-y_{0})}
By non-zero steady condition,
α
e
(
g
−
1
)
y
0
=
β
e
(
h
−
1
)
y
0
{\displaystyle \alpha e^{(g-1)y_{0}}=\beta e^{(h-1)y_{0}}}
, a nonlinear one-variable S-system can be transformed into a first-order ODE :
d
u
d
t
≃
(
α
e
(
g
−
1
)
y
0
(
g
−
h
)
)
u
=
(
F
a
)
u
{\displaystyle {\frac {du}{dt}}\simeq \left(\alpha e^{(g-1)y_{0}}(g-h)\right)u=\left(Fa\right)u}
where
F
=
α
e
(
g
−
1
)
y
0
{\displaystyle F=\alpha e^{(g-1)y_{0}}}
,
a
=
g
−
h
{\displaystyle a=g-h}
, and
u
=
y
−
y
0
≃
x
−
x
0
x
0
{\displaystyle u=y-y_{0}\simeq {\frac {x-x_{0}}{x_{0}}}}
, called a percentage variation .
Two variables S-system
In the case of
n
=
2
(
i
=
1
,
2
)
{\displaystyle n=2(i=1,2)}
and
m
=
0
{\displaystyle m=0}
, the S-system equation can be written as system of (non-linear) differential equations .
{
d
x
1
d
t
=
α
1
x
1
g
11
x
2
g
21
−
β
1
x
1
h
11
x
2
h
21
d
x
2
d
t
=
α
2
x
2
g
21
x
2
g
22
−
β
2
x
1
h
21
x
2
h
22
{\displaystyle \left\{{\begin{matrix}{\frac {dx_{1}}{dt}}=\alpha _{1}x_{1}^{g_{11}}x_{2}^{g_{21}}-\beta _{1}x_{1}^{h_{11}}x_{2}^{h_{21}}\ \\{\frac {dx_{2}}{dt}}=\alpha _{2}x_{2}^{g_{21}}x_{2}^{g_{22}}-\beta _{2}x_{1}^{h_{21}}x_{2}^{h_{22}}\end{matrix}}\right.}
Assume non-zero steady condition,
d
x
i
0
d
t
=
0
{\displaystyle {\frac {dx_{i0}}{dt}}=0}
.
Transformation two variables S-system into a second-order ODE
By putting
x
i
=
e
log
x
i
=
e
y
i
{\displaystyle x_{i}=e^{\operatorname {log} x_{i}}=e^{y_{i}}}
. The given system of equations can be written as
{
d
u
1
d
t
=
c
11
u
1
+
c
12
u
2
d
u
2
d
t
=
c
21
u
1
+
c
22
u
2
{\displaystyle \left\{{\begin{matrix}{\frac {du_{1}}{dt}}=c_{11}u_{1}+c_{12}u_{2}\ \\{\frac {du_{2}}{dt}}=c_{21}u_{1}+c_{22}u_{2}\end{matrix}}\right.}
(where
u
i
=
y
i
−
y
i
0
{\displaystyle u_{i}=y_{i}-y_{i0}}
,
u
i
=
y
i
−
y
i
0
{\displaystyle u_{i}=y_{i}-y_{i0}}
and
c
i
j
(
i
,
j
=
1
,
2
)
{\displaystyle c_{ij}(i,j=1,2)}
are constant.
Since
d
2
u
1
d
t
2
=
c
11
d
u
1
d
t
+
c
12
d
u
2
d
t
{\displaystyle {\frac {d^{2}u_{1}}{dt^{2}}}=c_{11}{\frac {du_{1}}{dt}}+c_{12}{\frac {du_{2}}{dt}}}
, the given system of equation can be approximated as a second-order ODE:
d
2
u
1
d
t
2
−
(
c
11
+
c
22
)
d
u
1
d
t
+
(
c
11
c
22
−
c
12
c
21
)
u
1
=
0
{\displaystyle {\frac {d^{2}u_{1}}{dt^{2}}}-\left(c_{11}+c_{22}\right){\frac {du_{1}}{dt}}+\left(c_{11}c_{22}-c_{12}c_{21}\right)u_{1}=0}
,
Applications
Consider the following chemical pathway:
A
+
2
B
→
k
1
C
→
k
2
3
D
+
E
{\displaystyle {\ce {A + 2B ->[k_1] C ->[k_2] 3D + E}}}
where
k
1
{\displaystyle k_{1}}
and
k
2
{\displaystyle k_{2}}
are rate constants .
Then the mass-action law applied to species
C
{\displaystyle {\ce {C}}}
gives the equation
d
[
C
]
d
t
=
k
1
[
A
]
[
B
]
2
−
k
2
[
D
]
3
[
E
]
{\displaystyle {\frac {d[C]}{dt}}=k_{1}[A][B]^{2}-k_{2}[D]^{3}[E]}
(where
[
A
]
{\displaystyle [A]}
is a concentration of A etc.)
Komarova Model is an example of a two-variable system of non-linear differential equations that describes bone remodeling . This equation is regulated by biochemical factors called paracrine and autocrine , which quantify the bone mass in each step.
{
d
x
1
d
t
=
α
1
x
1
g
11
x
2
g
21
−
β
1
x
1
d
x
2
d
t
=
α
2
x
1
g
12
x
2
g
22
−
β
2
x
2
d
z
d
t
=
−
k
1
y
1
+
k
2
y
2
{\displaystyle \left\{{\begin{matrix}\quad {\frac {dx_{1}}{dt}}=\alpha _{1}x_{1}^{g_{11}}x_{2}^{g_{21}}-\beta _{1}x_{1}\\\quad {\frac {dx_{2}}{dt}}=\alpha _{2}x_{1}^{g_{12}}x_{2}^{g_{22}}-\beta _{2}x_{2}\\{\frac {dz}{dt}}=-k_{1}y_{1}+k_{2}y_{2}\end{matrix}}\right.}
Where
x
1
{\displaystyle x_{1}}
,
x
2
{\displaystyle x_{2}}
: The number of osteoclast /osteoblasts
α
1
{\displaystyle \alpha _{1}}
,
α
2
{\displaystyle \alpha _{2}}
: Osteoclast/Osteoblast production rate
β
1
{\displaystyle \beta _{1}}
,
β
2
{\displaystyle \beta _{2}}
: Osteoclast/Osteoblast removal rate
g
i
j
{\displaystyle g_{ij}}
: Paracrine factor on the
j
{\displaystyle j}
-cell due to the presence of
i
{\displaystyle i}
-cell
z
{\displaystyle z}
: The bone mass percentage
y
i
{\displaystyle y_{i}}
: Let
x
i
¯
{\displaystyle {\bar {x_{i}}}}
be the difference between the number of osteoclasts/osteoblasts and its steady state. Then
y
i
:=
1
2
[
(
x
i
−
x
i
¯
)
+
(
x
i
−
x
i
¯
)
)
]
{\displaystyle y_{i}:={\frac {1}{2}}\left[\left(x_{i}-{\bar {x_{i}}})+(x_{i}-{\bar {x_{i}}})\right)\right]}
The modified Komarova Model describes the tumor effect on the osteoclasts and osteoblasts rate. The following equation can be described as
{
d
x
1
d
t
=
α
1
(
ω
)
^
x
1
g
11
x
2
g
21
−
β
1
(
ω
)
^
x
1
d
x
2
d
t
=
α
2
(
ω
)
^
x
2
g
22
−
β
2
(
ω
)
^
x
2
d
ω
d
t
=
μ
ω
log
(
σ
L
ω
ω
)
{\displaystyle \left\{{\begin{matrix}{\frac {dx_{1}}{dt}}={\widehat {\alpha _{1}(\omega )}}x_{1}^{g_{11}}x_{2}^{g_{21}}-{\widehat {\beta _{1}(\omega )}}x_{1}\\{\frac {dx_{2}}{dt}}={\widehat {\alpha _{2}(\omega )}}x_{2}^{g_{22}}-{\widehat {\beta _{2}(\omega )}}x_{2}\\{\frac {d\omega }{dt}}=\mu \omega \operatorname {log} \left(\sigma {\frac {L_{\omega }}{\omega }}\right)\end{matrix}}\right.}
(with initial condition
x
1
(
0
)
=
x
10
{\displaystyle x_{1}(0)=x_{10}}
,
x
2
(
0
)
=
x
20
{\displaystyle x_{2}(0)=x_{20}}
, and
ω
(
0
)
=
ω
0
{\displaystyle \omega (0)=\omega _{0}}
)
Where
x
1
{\displaystyle x_{1}}
,
x
2
{\displaystyle x_{2}}
: The number of osteoclast /osteoblasts .
ω
=
ω
(
t
)
{\displaystyle \omega =\omega (t)}
: The tumor representation depending on time
t
{\displaystyle t}
α
1
(
ω
)
^
{\displaystyle {\widehat {\alpha _{1}(\omega )}}}
,
α
2
(
ω
)
^
{\displaystyle {\widehat {\alpha _{2}(\omega )}}}
: The representation of the activity of cell production
β
1
(
ω
)
^
{\displaystyle {\widehat {\beta _{1}(\omega )}}}
,
β
2
(
ω
)
^
{\displaystyle {\widehat {\beta _{2}(\omega )}}}
: The representation of the activity of cell removal
g
i
j
{\displaystyle g_{ij}}
: The net effectiveness of osteoclast/osteoblast derived autocrine and paracrine factors
μ
{\displaystyle \mu }
: The tumor cell proliferation rate
L
ω
{\displaystyle L_{\omega }}
: The upper limit value for tumor cells
σ
{\displaystyle \sigma }
: Scaling constant of tumor growth
References
^ Savageau, Michael A. (1988-01-01). "Introduction to S-systems and the underlying power-law formalism" . Mathematical and Computer Modelling . 11 : 546– 551. doi :10.1016/0895-7177(88)90553-5 . ISSN 0895-7177 .
^ a b Tournier, Laurent (2005-07-24). "Approximation of dynamical systems using s-systems theory: Application to biological systems" . Proceedings of the 2005 international symposium on Symbolic and algebraic computation . ISSAC '05. New York, NY, USA: Association for Computing Machinery. pp. 317– 324. doi :10.1145/1073884.1073928 . ISBN 978-1-59593-095-8 .
^ Komarova, Svetlana V.; Smith, Robert J.; Dixon, S. Jeffrey; Sims, Stephen M.; Wahl, Lindi M. (August 2003). "Mathematical model predicts a critical role for osteoclast autocrine regulation in the control of bone remodeling". Bone . 33 (2): 206– 215. doi :10.1016/s8756-3282(03)00157-1 . ISSN 8756-3282 . PMID 14499354 .
^ Ramtani, Salah; Sánchez, Juan Felipe; Boucetta, Abdelkader; Kraft, Reuben; Vaca-González, Juan Jairo; Garzón-Alvarado, Diego A. (June 2023). "A coupled mathematical model between bone remodeling and tumors: a study of different scenarios using Komarova's model" . Biomechanics and Modeling in Mechanobiology . 22 (3): 925– 945. doi :10.1007/s10237-023-01689-3 . ISSN 1617-7940 . PMC 10167202 . PMID 36922421 .
^ Ayati, Bruce P.; Edwards, Claire M.; Webb, Glenn F.; Wikswo, John P. (2010-04-20). "A mathematical model of bone remodeling dynamics for normal bone cell populations and myeloma bone disease" . Biology Direct . 5 : 28. doi :10.1186/1745-6150-5-28 . ISSN 1745-6150 . PMC 2867965 . PMID 20406449 .