Swarm robotics

Swarm of open-source Jasmine micro-robots recharging themselves
A team of iRobot Create robots at the Georgia Institute of Technology

Swarm robotics is the study of how to design independent systems of robots without centralized control. The emerging swarming behavior of robotic swarms is created through the interactions between individual robots and the environment.[1] This idea emerged on the field of artificial swarm intelligence, as well as the studies of insects, ants and other fields in nature, where swarm behavior occurs.[2]

Relatively simple individual rules can produce a large set of complex swarm behaviors. A key component is the communication between the members of the group that build a system of constant feedback. The swarm behavior involves constant change of individuals in cooperation with others, as well as the behavior of the whole group.

Key Attributes of Robotic Swarms

The design of swarm robotics systems is guided by swarm intelligence principles, which promote fault tolerance, scalability, and flexibility.[1] Unlike distributed robotic systems in general, swarm robotics emphasizes a large number of robots. While various formulations of swarm intelligence principles exist, one widely recognized set includes:

  1. Robots are autonomous.
  2. Robots can interact with the surroundings and give feedback to modify the environment.
  3. Robots possess local perceiving and communicating capabilities, such as wireless transmission systems, like radio frequency or infrared.[3]
  4. Robots do not exploit centralized swarm control or global knowledge.
  5. Robots cooperate with each other to accomplish the given task.[4]

Miniaturization is also key factor in swarm robotics, as the effect of thousands of small robots can maximize the effect of the swarm-intelligent approach to achieve meaningful behavior at swarm-level through a greater number of interactions on an individual level.[5]

Compared with individual robots, a swarm can commonly decompose its given missions to their subtasks;[6] a swarm is more robust to partial failure and is more flexible with regard to different missions.[7]

History

The phrase "swarm robotics" was reported to make its first appearance in 1991 according to Google Scholar, but research regarding swarm robotics began to grow in early 2000s. The initial goal of studying swarm robotics was to test whether the concept of stigmergy could be used as a method for robots to indirectly communication and coordinate with each other.[5]

One of the first international projects regarding swarm robotics was the SWARM-BOTS project funded by the European Commission between 2001 and 2005, in which a swarm of up to 20 of robots capable of independently physically connect to each other to form a cooperating system were used to study swarm behaviors such as collective transport, area coverage, and searching for objects. The result was demonstration of self-organized teams of robots that cooperate to solve a complex task, with the robots in the swarm taking different roles over time. This work was then expanded upon through the Swarmanoid project (2006–2010), which extended the ideas and algorithms developed in Swarm-bots to heterogeneous robot swarms composed of three types of robots—flying, climbing, and ground-based—that collaborated to carry out a search and retrieval task.[5]

Applications

There are many potential applications for swarm robotics.[8] They include tasks that demand miniaturization (nanorobotics, microbotics), like distributed sensing tasks in micromachinery or the human body. A promising use of swarm robotics is in search and rescue missions.[9] Swarms of robots of different sizes could be sent to places that rescue-workers cannot reach safely, to explore the unknown environment and solve complex mazes via onboard sensors.[9] Swarm robotics can also be suited to tasks that demand cheap designs, for instance mining or agricultural shepherding tasks.[10]

Drone swarms

A 100 drone swarm flight commemorating the 100th anniversary of the Korea Aerospace Research Institute
A 100 drone swarm flight commemorating the 100th anniversary of the Korea Aerospace Research Institute

Drone swarms are used in target search, drone displays, and delivery. A drone display commonly uses multiple, lighted drones at night for an artistic display or advertising. A delivery drone swarm can carry multiple packages to a single destination at a time and overcome a single drone's payload and battery limitations.[11] A drone swarm may undertake different flight formations to reduce overall energy consumption due to drag forces.[12]

Drone swarming can also introduce additional control issues connected to human factors and the swarm operator. Examples of this include high cognitive demand and complexity when interacting with multiple drones due to changing attention between different individual drones.[13][14] Communication between operator and swarm is also a central aspect.[15]

Military swarms

More controversially, swarms of military robots can form an autonomous army. U.S. Naval forces have tested a swarm of autonomous boats that can steer and take offensive actions by themselves. The boats are unmanned and can be fitted with any kind of kit to deter and destroy enemy vessels.[16]

During the Syrian Civil War, Russian forces in the region reported attacks on their main air force base in the country by swarms of fixed-wing drones loaded with explosives.[17]

Miniature swarms

Another large set of applications may be solved using swarms of micro air vehicles, which are also broadly investigated nowadays. In comparison with the pioneering studies of swarms of flying robots using precise motion capture systems in laboratory conditions,[18] current systems such as Shooting Star can control teams of hundreds of micro aerial vehicles in outdoor environment[19] using GNSS systems (such as GPS) or even stabilize them using onboard localization systems[20] where GPS is unavailable.[21][22] Swarms of micro aerial vehicles have been already tested in tasks of autonomous surveillance,[23] plume tracking,[24] and reconnaissance in a compact phalanx.[25] Numerous works on cooperative swarms of unmanned ground and aerial vehicles have been conducted with target applications of cooperative environment monitoring,[26] simultaneous localization and mapping,[27] convoy protection,[28] and moving target localization and tracking.[29]

Acoustic swarms

In 2023, University of Washington and Microsoft researchers demonstrated acoustic swarms of tiny robots that create shape-changing smart speakers.[30] These can be used for manipulating acoustic scenes to focus on or mute sounds from a specific region in a room.[31] Here, tiny robots cooperate with each other using sound signals, without any cameras, to navigate cooperatively with centimeter-level accuracy. These swarm devices spread out across a surface to create a distributed and reconfigurable wireless microphone array. They also navigate back to the charging station where they can be automatically recharged.[32]

Kilobot

Most efforts have focused on relatively small groups of machines. However, a Kilobot swarm consisting of 1,024 individual robots was demonstrated by Harvard in 2014, the largest to date.[33]

LIBOT

Another example of miniaturization is the LIBOT Robotic System[34] that involves a low cost robot built for outdoor swarm robotics. The robots are also made with provisions for indoor use via Wi-Fi, since the GPS sensors provide poor communication inside buildings.

A swarm of open source micro Colias robots
A swarm of open source micro Colias robots

Colias

Another such attempt is the micro robot (Colias),[35] built in the Computer Intelligence Lab at the University of Lincoln, UK. This micro robot is built on a 4 cm circular chassis and is a low-cost and open platform for use in a variety of swarm robotics applications.

Manufacturing swarms

Additionally, progress has been made in the application of autonomous swarms in the field of manufacturing, known as swarm 3D printing. This is particularly useful for the production of large structures and components, where traditional 3D printing is not able to be utilized due to hardware size constraints. Miniaturization and mass mobilization allows the manufacturing system to achieve scale invariance, not limited in effective build volume. While in its early stage of development, swarm 3D printing is currently being commercialized by startup companies.[36]

See also

References

  1. ^ a b Dorigo, Marco; Birattari, Mauro; Brambill, Manuele (2014). "Swarm Robotics". Scholarpedia. 9 (1): 1463. Bibcode:2014SchpJ...9.1463D. doi:10.4249/scholarpedia.1463.
  2. ^ Nguyen, Luong Vuong (2 October 2024). "Swarm Intelligence-Based Multi-Robotics: A Comprehensive Review". AppliedMath. 4 (4): 1192–1210. doi:10.3390/appliedmath4040064. ISSN 2673-9909.
  3. ^ Kernbach, Serge, ed. (2013-05-29), "Architectures and Control of Networked Robotic Systems", Handbook of Collective Robotics (0 ed.), Jenny Stanford Publishing, pp. 105–128, doi:10.1201/b14908-6, ISBN 978-0-429-06759-4, retrieved 2024-12-04
  4. ^ Brambilla, Manuele; Ferrante, Eliseo; Birattari, Mauro; Dorigo, Marco (17 January 2013). "Swarm robotics: a review from the swarm engineering perspective". Swarm Intelligence. 7 (1): 1–41. doi:10.1007/s11721-012-0075-2. ISSN 1935-3812.
  5. ^ a b c Dorigo, Marco; Theraulaz, Guy; Trianni, Vito (18 June 2021). "Swarm Robotics: Past, Present, and Future [Point of View]". Proceedings of the IEEE. 109 (7): 1152–1165. doi:10.1109/JPROC.2021.3072740. ISSN 0018-9219.
  6. ^ Hu, Junyan; Bhowmick, Parijat; Lanzon, Alexander (2020-11-10). "Two-layer distributed formation-containment control strategy for linear swarm systems: Algorithm and experiments". International Journal of Robust and Nonlinear Control. 30 (16): 6433–6453. doi:10.1002/rnc.5105. ISSN 1049-8923.
  7. ^ Kagan, Eugene, ed. (2020). Autonomous mobile robots and multi-robot systems: motion-planning, communication and swarming (1st ed.). Hoboken, NJ: John Wiley & Sons, Inc. ISBN 978-1-119-21286-7.
  8. ^ Cheraghi, Ahmad Reza; Shahzad, Sahdia; Graffi, Kalman (2021-01-03), Past, Present, and Future of Swarm Robotics, arXiv:2101.00671
  9. ^ a b Hu, J.; Niu, H.; Carrasco, J.; Lennox, B.; Arvin, F., "Voronoi-Based Multi-Robot Autonomous Exploration in Unknown Environments via Deep Reinforcement Learning" IEEE Transactions on Vehicular Technology, 2020.
  10. ^ Hu, J.; Turgut, A.; Krajnik, T.; Lennox, B.; Arvin, F., "Occlusion-Based Coordination Protocol Design for Autonomous Robotic Shepherding Tasks" IEEE Transactions on Cognitive and Developmental Systems, 2020.
  11. ^ Alkouz, Balsam; Bouguettaya, Athman; Mistry, Sajib (Oct 18–24, 2020). "Swarm-based Drone-as-a-Service (SDaaS) for Delivery". 2020 IEEE International Conference on Web Services (ICWS). pp. 441–448. arXiv:2005.06952. doi:10.1109/ICWS49710.2020.00065. ISBN 978-1-7281-8786-0. S2CID 218628807.
  12. ^ Alkouz, Balsam; Bouguettaya, Athman (Dec 7–9, 2020). "Formation-based Selection of Drone Swarm Services". MobiQuitous 2020 - 17th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services. pp. 386–394. arXiv:2011.06766. doi:10.1145/3448891.3448899. ISBN 9781450388405. S2CID 226955877.
  13. ^ Hocraffer, Amy; Nam, Chang S. (2017). "A meta-analysis of human-system interfaces in unmanned aerial vehicle (UAV) swarm management". Applied Ergonomics. 58: 66–80. doi:10.1016/j.apergo.2016.05.011. PMID 27633199.
  14. ^ Lewis, Michael (2013). "Human Interaction With Multiple Remote Robots". Reviews of Human Factors and Ergonomics. 9 (1): 131–174. doi:10.1177/1557234X13506688.
  15. ^ Kolling, Andreas; Phillip, Walker; Nilanjan, Chakraborty; Katia, Sycara; Michael, Lewis (2016). "Human interaction with robot swarms: A survey" (PDF). IEEE Transactions on Human-Machine Systems. 46 (1): 9–26. doi:10.1109/THMS.2015.2480801. S2CID 9975315.
  16. ^ Lendon, Brad (6 October 2014). "U.S. Navy could 'swarm' foes with robot boats". CNN.
  17. ^ Madrigal, Alexis C. (2018-03-07). "Drone Swarms Are Going to Be Terrifying and Hard to Stop". The Atlantic. Retrieved 2019-03-07.
  18. ^ Kushleyev, A.; Mellinger, D.; Powers, C.; Kumar, V., "Towards a swarm of agile micro quadrotors" Autonomous Robots, Volume 35, Issue 4, pp 287-300, November 2013
  19. ^ Vasarhelyi, G.; Virágh, C.; Tarcai, N.; Somorjai, G.; Vicsek, T. Outdoor flocking and formation flight with autonomous aerial robots. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), 2014
  20. ^ Faigl, J.; Krajnik, T.; Chudoba, J.; Preucil, L.; Saska, M. Low-Cost Embedded System for Relative Localization in Robotic Swarms. In ICRA2013: Proceedings of 2013 IEEE International Conference on Robotics and Automation. 2013.
  21. ^ Saska, M.; Vakula, J.; Preucil, L. Swarms of Micro Aerial Vehicles Stabilized Under a Visual Relative Localization. In ICRA2014: Proceedings of 2014 IEEE International Conference on Robotics and Automation. 2014.
  22. ^ Saska, M. MAV-swarms: unmanned aerial vehicles stabilized along a given path using onboard relative localization. In Proceedings of 2015 International Conference on Unmanned Aircraft Systems (ICUAS). 2015
  23. ^ Saska, M.; Chudoba, J.; Preucil, L.; Thomas, J.; Loianno, G.; Tresnak, A.; Vonasek, V.; Kumar, V. Autonomous Deployment of Swarms of Micro-Aerial Vehicles in Cooperative Surveillance. In Proceedings of 2014 International Conference on Unmanned Aircraft Systems (ICUAS). 2014.
  24. ^ Saska, M.; Langr J.; L. Preucil. Plume Tracking by a Self-stabilized Group of Micro Aerial Vehicles. In Modelling and Simulation for Autonomous Systems, 2014.
  25. ^ Saska, M.; Kasl, Z.; Preucil, L. Motion Planning and Control of Formations of Micro Aerial Vehicles. In Proceedings of the 19th World Congress of the International Federation of Automatic Control. 2014.
  26. ^ Saska, M.; Vonasek, V.; Krajnik, T.; Preucil, L. Coordination and Navigation of Heterogeneous UAVs-UGVs Teams Localized by a Hawk-Eye Approach Archived 2017-08-10 at the Wayback Machine. In Proceedings of 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2012.
  27. ^ Chung, Soon-Jo, et al. "A survey on aerial swarm robotics." IEEE Transactions on Robotics 34.4 (2018): 837-855.
  28. ^ Saska, M.; Vonasek, V.; Krajnik, T.; Preucil, L. Coordination and Navigation of Heterogeneous MAV–UGV Formations Localized by a ‘hawk-eye’-like Approach Under a Model Predictive Control Scheme. International Journal of Robotics Research 33(10):1393–1412, September 2014.
  29. ^ Kwon, Hyukseong; Pack, Daniel J. (2012). "A Robust Mobile Target Localization Method for Cooperative Unmanned Aerial Vehicles Using Sensor Fusion Quality". Journal of Intelligent & Robotic Systems. 65 (1–4): 479–493. doi:10.1007/s10846-011-9581-5. S2CID 254656907.
  30. ^ Itani, Malek; Chen, Tuochao; Yoshioka, Takuya; Gollakota, Shyamnath (2023-09-21). "Creating speech zones with self-distributing acoustic swarms". Nature Communications. 14 (1): 5684. Bibcode:2023NatCo..14.5684I. doi:10.1038/s41467-023-40869-8. ISSN 2041-1723. PMC 10514314. PMID 37735445.
  31. ^ "UW team's shape-changing smart speaker lets users mute different areas of a room". UW News. Retrieved 2023-09-21.
  32. ^ "Creating Speech Zones Using Self-distributing Acoustic Swarms". acousticswarm.cs.washington.edu. Retrieved 2023-09-21.
  33. ^ "A self-organizing thousand-robot swarm". Harvard. 14 August 2014. Retrieved 16 August 2014.
  34. ^ Zahugi, Emaad Mohamed H.; Shabani, Ahmed M.; Prasad, T. V. (2012), "Libot: Design of a low cost mobile robot for outdoor swarm robotics", 2012 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), pp. 342–347, doi:10.1109/CYBER.2012.6392577, ISBN 978-1-4673-1421-3, S2CID 14692473
  35. ^ Arvin, F.; Murray, J.C.; Licheng Shi; Chun Zhang; Shigang Yue, "Development of an autonomous micro robot for swarm robotics," 2014 IEEE International Conference on Mechatronics and Automation (ICMA), vol., no., pp.635,640, 3-6 Aug. 2014 doi: 10.1109/ICMA.2014.6885771
  36. ^ "Technology". 25 July 2020. Archived from the original on 4 August 2020. Retrieved 16 August 2020.

Read other articles:

A hijra sex worker Part of a series onTransgender topics      OutlineHistoryTimeline Gender identities Androgyne Bissu, Calabai, Calalai Burrnesha Cisgender Gender bender Hijra Non-binary or genderqueer Gender fluidity Kathoey Koekchuch Third gender Bakla Faʻafafine Femminiello Khanith Māhū Mudoko dako Mukhannath Muxe Travesti Two-spirit Winkte X-gender Trans man Trans woman Fakaleitī Mak nyah Rae-rae Transgender Youth Akava'ine Transsexual Health care practices ...

 

منتخب الكويت لكرة اليد منتخب الكويت لكرة اليد البلد ؟؟ اللقب الأزرق الاتحاد الاتحاد الكويتي لكرة اليد المدرب سعيد حجازي[1] الزي الأساسي الزي الإحتياطي ألعاب أولمبية صيفية أفضل نتيجة دور المجموعات 1980، 1996 بطولة العالم لكرة اليد الظهور 8 (بدأت من 1982) أفضل نتيجة 15 1982 البطول...

 

العلاقات البريطانية الفنزويلية المملكة المتحدة فنزويلا   المملكة المتحدة   فنزويلا تعديل مصدري - تعديل   العلاقات البريطانية الفنزويلية هي العلاقات الثنائية التي تجمع بين المملكة المتحدة وفنزويلا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة ...

Building in Ditcheat, EnglandThe AbbeyGeneral informationTown or cityDitcheatCountryEnglandConstruction started1473ClientJohn Gunthorpe The Abbey, Ditcheat (formerly known as The Priory) is a large house at Ditcheat in Somerset. Originally a rectory, now converted into a house, the Grade II* listed building dates from the 15th century. To the rear of the Abbey is a Grade II listed granary. House The Abbey was built as the rectory by John Gunthorpe who was rector of Ditcheat and Dean of Wells...

 

Neighborhood in Erie County, New York, United StatesSouth CheektowagaNeighborhoodCountryUnited StatesStateNew YorkCountyErie CountyTime zoneUTC-5 (EST) • Summer (DST)UTC-4 (EDT)ZIP code14225/14227Area code716 South Cheektowaga is a neighborhood on the West Seneca border near French Road, in the town of Cheektowaga, in Erie County, New York, United States. It is home to the large South Line Fire Company,[1] as well as Stigimeier Park (Losson Park), where nature trails and ...

 

Bulbophyllum barbigerum Klasifikasi ilmiah Kerajaan: Plantae (tanpa takson): Angiospermae (tanpa takson): Monocots Ordo: Asparagales Famili: Orchidaceae Genus: Bulbophyllum Spesies: Bulbophyllum barbigerum Nama binomial Bulbophyllum barbigerumLindl. 1837 Bulbophyllum barbigerum adalah spesies tumbuhan yang tergolong ke dalam famili Orchidaceae. Spesies ini juga merupakan bagian dari ordo Asparagales. Spesies Bulbophyllum barbigerum sendiri merupakan bagian dari genus Bulbophyllum.[1]...

1997 American filmSwitchbackTheatrical release posterDirected byJeb StuartWritten byJeb StuartProduced byGale Anne HurdStarring Dennis Quaid Danny Glover Jared Leto Ted Levine R. Lee Ermey CinematographyOliver WoodEdited byConrad BuffMusic byBasil PoledourisProductioncompanyPacific Western Production[1]Distributed by Paramount Pictures[1] Rysher Entertainment[1] Release date October 31, 1997 (1997-10-31) Running time118 minutes[1]CountryUnited St...

 

Genicular arteriesThe genicular arteriesThe genicular anastomosisAnatomical terminology[edit on Wikidata] The genicular arteries (from Latin geniculum, knee) are six arteries in the human leg, five of which are branches of the popliteal artery, that anastomose in the knee region in the patellar network or genicular anastomosis.[1] They supply blood to the patella, together with contributions from the descending genicular artery, anterior tibial recurrent artery, and descending bra...

 

Manchester United Women 2021–22 football seasonManchester United Women2021–22 seasonCo-chairmenJoel and Avram GlazerHead coachMarc SkinnerStadiumLeigh Sports VillageFA WSL4thFA CupFifth roundLeague CupSemi-finalsTop goalscorerLeague: Alessia Russo(9 goals)All: Alessia Russo(11 goals)Highest home attendance20,241(v. Everton,27 March 2022)Lowest home attendance1,001(v. Aston Villa,19 December 2021)Average home league attendance3,567 Home colours Away colours Third colours ← 2020...

此条目序言章节没有充分总结全文内容要点。 (2019年3月21日)请考虑扩充序言,清晰概述条目所有重點。请在条目的讨论页讨论此问题。 哈萨克斯坦總統哈薩克總統旗現任Қасым-Жомарт Кемелұлы Тоқаев卡瑟姆若马尔特·托卡耶夫自2019年3月20日在任任期7年首任努尔苏丹·纳扎尔巴耶夫设立1990年4月24日(哈薩克蘇維埃社會主義共和國總統) 哈萨克斯坦 哈萨克斯坦政府...

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (أغسطس 2023)Learn how and when to remove this message هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليه�...

 

Stratovolcano in Aomori Prefecture, Japan Not to be confused with Mount Iwate. You can help expand this article with text translated from the corresponding article in Japanese. (April 2013) Click [show] for important translation instructions. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text i...

Kejuaraan Bulu Tangkis Seluruh Afrika (bahasa Inggris: All Africa Championships) adalah kejuaraan yang diselenggarakan oleh Konfederasi Bulu Tangkis Afrika untuk menentukan pemain dan tim nasional bulu tangkis terbaik di Afrika. Kejuaraan ini pertama kali diselenggarakan di Kumasi, Ghana pada tahun 1979.[1] Digelar rutin setiap tahunnya sejak tahun 2010, kejuaraan ini mempertandingkan kategori perseorangan dan beregu (beregu putra/putri atau beregu campuran).[2] Penyelenggaraa...

 

Untuk kapal lain dengan nama serupa, lihat HMS Ark Royal. HMS Ark Royal adalah kapal induk ringan dan mantan unggulan dari Royal Navy. Dia adalah kapal ketiga dan terakhir dari kelas Invincible. Dia dibangun oleh Swan Hunters di Sungai Tyne dan diluncurkan oleh mereka pada tahun 1981. Ark Royal disebut oleh Elizabeth Bowes-Lyon. Dia mengikuti kapal HMS Invincible dan HMS Illustrious ke layanan pada tahun 1985. Yang dikenal sebagai The Mighty Ark, dia adalah kelima kapal Royal Navy telah mengg...

 

Nottebohm Case (Liechtenstein v. Guatemala)CourtInternational Court of JusticeFull case nameNottebohm Case (second phase), Judgment of April 6, 1955 DecidedApril 6, 1955 (1955-04-06)Citation(s)[1955] ICJ 1Court membershipJudges sittingGreen Hackworth, Abdel Badawi Pasha, Jules Basdevant, Milovan Zoričić, Helge Klæstad, John Read, Hsu Mo, Enrique Armand-Ugón, Fyodor Kozhevnikov, Muhammad Zafrulla Khan, Lucio Moreno Quintana, Roberto Cordova, Paul Guggenheim (ad hoc), and Car...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Bagian dari seriIslam Rukun Iman Keesaan Allah Malaikat Kitab-kitab Allah Nabi dan Rasul Allah Hari Kiamat Qada dan Qadar Rukun Islam Syahadat Salat Zakat Puasa Haji Sumber hukum Islam al-Qur'an Sunnah (Hadis, Sirah) Tafsir Akidah Fikih Syariat Sejarah...

 

Archaeological site in Albania Walls of the acropolis Zgërdhesh is an archeological site in Albania. It is located south of the road from Fushë-Kruja to Kruja. Zgërdhesh is somewhat of a mystery because it is unmentioned in ancient sources. Some scholars believe, however, that it may be the site of ancient Albanopolis, referred to by Pliny the Elder. The Illyrian settlement here seems to have been founded in the 7th or 6th century BC and flourished in the 4th and 3rd centuries, before bein...

 

Galleria d'arte moderna di BolognaL'edificio sede della Galleria nel quartiere Fiera, progettato da Leone Pancaldi e inaugurato nel 1975. Foto di Paolo Monti UbicazioneStato Italia LocalitàBologna IndirizzoPiazza della Costituzione 3, Bologna Coordinate44°30′09″N 11°20′12.84″E44°30′09″N, 11°20′12.84″E CaratteristicheTipoArte Istituzione1926 Chiusura2007 Modifica dati su Wikidata · Manuale La Galleria d'arte moderna di Bologna è stato uno dei musei più importa...

عبد الملك مرتاض معلومات شخصية الميلاد 10 أكتوبر 1935متلمسان  الوفاة 3 نوفمبر 2023 (88 سنة)الجزائر  مواطنة الجزائر  عضو في مجمع اللغة العربية بدمشق  الحياة العملية المهنة كاتب،  وأستاذ جامعي،  وأديب  اللغة الأم العربية  اللغات العربية  أعمال بارزة في نظرية ا...

 

2020年夏季奥林匹克运动会巴布亚新几内亚代表團巴布亚新几内亚国旗IOC編碼PNGNOC巴布亚新几内亚奥林匹克委员会網站www.pngolympic.org(英文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員8參賽項目5个大项旗手开幕式:Morea Baru和Dika Toua(举重)[1]闭幕式:东京奥组委志愿者[2]历届奥林匹克运动...