Størmer's theorem

In number theory, Størmer's theorem, named after Carl Størmer, gives a finite bound on the number of consecutive pairs of smooth numbers that exist, for a given degree of smoothness, and provides a method for finding all such pairs using Pell equations. It follows from the Thue–Siegel–Roth theorem that there are only a finite number of pairs of this type, but Størmer gave a procedure for finding them all.[1]

Statement

If one chooses a finite set of prime numbers then the P-smooth numbers are defined as the set of integers

that can be generated by products of numbers in P. Then Størmer's theorem states that, for every choice of P, there are only finitely many pairs of consecutive P-smooth numbers. Further, it gives a method of finding them all using Pell equations.

The procedure

Størmer's original procedure involves solving a set of roughly 3k Pell equations, in each one finding only the smallest solution. A simplified version of the procedure, due to D. H. Lehmer,[2] is described below; it solves fewer equations but finds more solutions in each equation.

Let P be the given set of primes, and define a number to be P-smooth if all its prime factors belong to P. Assume p1 = 2; otherwise there could be no consecutive P-smooth numbers, because all P-smooth numbers would be odd. Lehmer's method involves solving the Pell equation

for each P-smooth square-free number q other than 2. Each such number q is generated as a product of a subset of P, so there are 2k − 1 Pell equations to solve. For each such equation, let xi, yi be the generated solutions, for i in the range from 1 to max(3, (pk + 1)/2) (inclusive), where pk is the largest of the primes in P.

Then, as Lehmer shows, all consecutive pairs of P-smooth numbers are of the form (xi − 1)/2, (xi + 1)/2. Thus one can find all such pairs by testing the numbers of this form for P-smoothness.

Lehmer's paper furthermore shows[3] that applying a similar procedure to the equation

where D ranges over all P-smooth square-free numbers other than 1, yields those pairs of P-smooth numbers separated by 2: the smooth pairs are then (x − 1, x + 1), where (x, y) is one of the first max(3, (max(P) + 1) / 2) solutions of that equation.

Example

To find the ten consecutive pairs of {2,3,5}-smooth numbers (in music theory, giving the superparticular ratios for just tuning) let P = {2,3,5}. There are seven P-smooth squarefree numbers q (omitting the eighth P-smooth squarefree number, 2): 1, 3, 5, 6, 10, 15, and 30, each of which leads to a Pell equation. The number of solutions per Pell equation required by Lehmer's method is max(3, (5 + 1)/2) = 3, so this method generates three solutions to each Pell equation, as follows.

  • For q = 1, the first three solutions to the Pell equation x2 − 2y2 = 1 are (3,2), (17,12), and (99,70). Thus, for each of the three values xi = 3, 17, and 99, Lehmer's method tests the pair (xi − 1)/2, (xi + 1)/2 for smoothness; the three pairs to be tested are (1,2), (8,9), and (49,50). Both (1,2) and (8,9) are pairs of consecutive P-smooth numbers, but (49,50) is not, as 49 has 7 as a prime factor.
  • For q = 3, the first three solutions to the Pell equation x2 − 6y2 = 1 are (5,2), (49,20), and (485,198). From the three values xi = 5, 49, and 485 Lehmer's method forms the three candidate pairs of consecutive numbers (xi − 1)/2, (xi + 1)/2: (2,3), (24,25), and (242,243). Of these, (2,3) and (24,25) are pairs of consecutive P-smooth numbers but (242,243) is not.
  • For q = 5, the first three solutions to the Pell equation x2 − 10y2 = 1 are (19,6), (721,228), and (27379,8658). The Pell solution (19,6) leads to the pair of consecutive P-smooth numbers (9,10); the other two solutions to the Pell equation do not lead to P-smooth pairs.
  • For q = 6, the first three solutions to the Pell equation x2 − 12y2 = 1 are (7,2), (97,28), and (1351,390). The Pell solution (7,2) leads to the pair of consecutive P-smooth numbers (3,4).
  • For q = 10, the first three solutions to the Pell equation x2 − 20y2 = 1 are (9,2), (161,36), and (2889,646). The Pell solution (9,2) leads to the pair of consecutive P-smooth numbers (4,5) and the Pell solution (161,36) leads to the pair of consecutive P-smooth numbers (80,81).
  • For q = 15, the first three solutions to the Pell equation x2 − 30y2 = 1 are (11,2), (241,44), and (5291,966). The Pell solution (11,2) leads to the pair of consecutive P-smooth numbers (5,6).
  • For q = 30, the first three solutions to the Pell equation x2 − 60y2 = 1 are (31,4), (1921,248), and (119071,15372). The Pell solution (31,4) leads to the pair of consecutive P-smooth numbers (15,16).

Number and size of solutions

Størmer's original result can be used to show that the number of consecutive pairs of integers that are smooth with respect to a set of k primes is at most 3k − 2k. Lehmer's result produces a tighter bound for sets of small primes: (2k − 1) × max(3,(pk+1)/2).[4]

The number of consecutive pairs of integers that are smooth with respect to the first k primes are

1, 4, 10, 23, 40, 68, 108, 167, 241, 345, ... (sequence A002071 in the OEIS).

The largest integer from all these pairs, for each k, is

2, 9, 81, 4375, 9801, 123201, 336141, 11859211, ... (sequence A117581 in the OEIS).

OEIS also lists the number of pairs of this type where the larger of the two integers in the pair is square (sequence A117582 in the OEIS) or triangular (sequence A117583 in the OEIS), as both types of pair arise frequently.

The size of the solutions can also be bounded: in the case where x and x+1 are required to be P-smooth, then[5]

where M = max(3, (max(P) + 1) / 2) and S is the product of all elements of P, and in the case where the smooth pair is x ± 1, we have[6]

Generalizations and applications

Louis Mordell wrote about this result, saying that it "is very pretty, and there are many applications of it."[7]

In mathematics

Chein (1976) used Størmer's method to prove Catalan's conjecture on the nonexistence of consecutive perfect powers (other than 8,9) in the case where one of the two powers is a square.

Mabkhout (1993) proved that every number x4 + 1, for x > 3, has a prime factor greater than or equal to 137. Størmer's theorem is an important part of his proof, in which he reduces the problem to the solution of 128 Pell equations.

Several authors have extended Størmer's work by providing methods for listing the solutions to more general diophantine equations, or by providing more general divisibility criteria for the solutions to Pell equations.[8]

Conrey, Holmstrom & McLaughlin (2013) describe a computational procedure that, empirically, finds many but not all of the consecutive pairs of smooth numbers described by Størmer's theorem, and is much faster than using Pell's equation to find all solutions.

In music theory

In the musical practice of just intonation, musical intervals can be described as ratios between positive integers. More specifically, they can be described as ratios between members of the harmonic series. Any musical tone can be broken into its fundamental frequency and harmonic frequencies, which are integer multiples of the fundamental. This series is conjectured to be the basis of natural harmony and melody. The tonal complexity of ratios between these harmonics is said to get more complex with higher prime factors. To limit this tonal complexity, an interval is said to be n-limit when both its numerator and denominator are n-smooth.[9] Furthermore, superparticular ratios are very important in just tuning theory as they represent ratios between adjacent members of the harmonic series.[10]

Størmer's theorem allows all possible superparticular ratios in a given limit to be found. For example, in the 3-limit (Pythagorean tuning), the only possible superparticular ratios are 2/1 (the octave), 3/2 (the perfect fifth), 4/3 (the perfect fourth), and 9/8 (the whole step). That is, the only pairs of consecutive integers that have only powers of two and three in their prime factorizations are (1,2), (2,3), (3,4), and (8,9). If this is extended to the 5-limit, six additional superparticular ratios are available: 5/4 (the major third), 6/5 (the minor third), 10/9 (the minor tone), 16/15 (the minor second), 25/24 (the minor semitone), and 81/80 (the syntonic comma). All are musically meaningful.

Notes

References

  • Cao, Zhen Fu (1991). "On the Diophantine equation (axm - 1)/(abx-1) = by2". Chinese Sci. Bull. 36 (4): 275–278. MR 1138803.
  • Chapman, Sydney (1958). "Fredrik Carl Mulertz Stormer, 1874-1957". Biographical Memoirs of Fellows of the Royal Society. 4: 257–279. doi:10.1098/rsbm.1958.0021. JSTOR 769515.
  • Chein, E. Z. (1976). "A note on the equation x2 = yq + 1". Proceedings of the American Mathematical Society. 56 (1): 83–84. doi:10.2307/2041579. JSTOR 2041579. MR 0404133.
  • Conrey, J. B.; Holmstrom, M. A.; McLaughlin, T. L. (2013). "Smooth neighbors". Experimental Mathematics. 22 (2): 195–202. arXiv:1212.5161. doi:10.1080/10586458.2013.768483. MR 3047912.
  • Halsey, G. D.; Hewitt, Edwin (1972). "More on the superparticular ratios in music". American Mathematical Monthly. 79 (10): 1096–1100. doi:10.2307/2317424. JSTOR 2317424. MR 0313189.
  • Lehmer, D. H. (1964). "On a Problem of Størmer". Illinois Journal of Mathematics. 8: 57–79. doi:10.1215/ijm/1256067456. MR 0158849.
  • Luo, Jia Gui (1991). "A generalization of the Störmer theorem and some applications". Sichuan Daxue Xuebao. 28 (4): 469–474. MR 1148835.
  • Mabkhout, M. (1993). "Minoration de P(x4+1)". Rend. Sem. Fac. Sci. Univ. Cagliari. 63 (2): 135–148. MR 1319302.
  • Mei, Han Fei; Sun, Sheng Fang (1997). "A further extension of Störmer's theorem". Journal of Jishou University (Natural Science Edition) (in Chinese). 18 (3): 42–44. MR 1490505.
  • Partch, Harry (1974). Genesis of a Music: An Account of a Creative Work, Its Roots, and Its Fulfillments (2nd ed.). New York: Da Capo Press. p. 73. ISBN 0-306-71597-X.
  • Størmer, Carl (1897). "Quelques théorèmes sur l'équation de Pell et leurs applications". Skrifter Videnskabs-selskabet (Christiania), Mat.-Naturv. Kl. I (2).
  • Sun, Qi; Yuan, Ping Zhi (1989). "On the Diophantine equations and ". Sichuan Daxue Xuebao. 26: 20–24. MR 1059671.
  • Walker, D. T. (1967). "On the diophantine equation mX2 - nY2 = ±1". American Mathematical Monthly. 74 (5): 504–513. doi:10.2307/2314877. JSTOR 2314877. MR 0211954.

Read other articles:

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber:...

 

 

Telugu cinema (Tollywood) 1930s 1940s 1941 1942 1943 19441945 1946 1947 1948 1949 1950 1950s 1951 1952 1953 19541955 1956 1957 1958 1959 1960 1960s 1961 1962 1963 19641965 1966 1967 1968 1969 1970 1970s 1971 1972 1973 19741975 1976 1977 1978 1979 1980 1980s 1981 1982 1983 19841985 1986 1987 1988 1989 1990 1990s 1991 1992 1993 19941995 1996 1997 1998 1999 2000 2000s 2001 2002 2003 20042005 2006 2007 2008 2009 2010 2010s 2011 2012 2013 20142015 2016 2017 2018 2019 2020 2020s 2021 2022 2023 202...

 

 

العلاقات اليمنية التونسية اليمن تونس   اليمن   تونس تعديل مصدري - تعديل   العلاقات اليمنية التونسية هي العلاقات الثنائية التي تجمع بين اليمن وتونس.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة اليمن تونس المس�...

Map of U.S. cities and counties that have bans on sexual orientation and gender identity change efforts.   Ban on conversion therapy for minors on the basis of sexual orientation and gender identity (Washington, D.C. also bans such therapy for adults.)   Ban on use of state or federal funds for conversion therapy for minors on the basis of sexual orientation and gender identity   State law prohibits local governments from banning conversion therapy   F...

 

 

Severe earthquake in Los Angeles County, California 1933 Long Beach earthquakeDamage to the John Muir School, Pacific Avenue, Long BeachLos AngelesUTC time1933-03-11 01:54:00ISC event905457USGS-ANSSComCatLocal dateMarch 10, 1933 (1933-03-10)Local time5:54 P.M. PST[1]Magnitude6.4 Mw [2]Depth10 km (6.2 mi) [2]Epicenter33°37′52″N 118°00′00″W / 33.631°N 118.000°W / 33.631; -118.000 [3]FaultNewpo...

 

 

Currency of the Kingdom of Lombardy–Venetia Lombardo-Venetian liralira austriaca (Italian) UnitSymbol£‎DenominationsSubunit 1⁄100centesimoCoinsc.1, c.3, c.5, c.10, c.15 £1⁄4, £1⁄2, £1, ₤3, £6 Rarely used£20, £40DemographicsOfficial user(s) Lombardy–VenetiaUnofficial user(s) Austria (silver coins)IssuanceMintMilan Mint, Venice Mint, Vienna MintValuationPegged by1⁄3 of Austrian florinThis infobox shows the latest status before thi...

Boîte en bois et en plomb pour le transport d'échantillons de radium. Début du XXe siècle, Musée Curie. Assemblage de briques de plomb protégeant l'environnement du rayonnement émis par une source radioactive Conteneur en plomb pour le transport des seringues de technétium 99m en service de médecine nucléaire au XXIe siècle La radioprotection est, en mécanique quantique ou physique atomique et nucléaire, l'ensemble des mesures prises pour assurer la protection de l'homm...

 

 

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...

 

 

† Человек прямоходящий Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:Синапсиды�...

Island in the Bering Sea in Alaska For other uses, see Hall Island. class=notpageimage| Location in Alaska Hall Island (Russian: Холл) is a small island located 3.5 miles (5.6 km) to the northwest of St. Matthew Island in the Bering Sea in Alaska, United States. It serves as a haulout site for Pacific walrus. It is 5 miles (8 km) in length and has a land area of 6.2 square miles (16 km2). The highest point is 1,610 feet (490 m). Hall Island is uninhabited. It is part o...

 

 

APEC Thailand 2003การประชุมเอเปค พ.ศ. 2546 ประเทศไทยAPEC Thailand 2003 delegatesHost countryThailandDate20–21 OctoberMottoA World of Differences: Partnership for the Future.(Thai: โลกแห่งความแตกต่าง: หุ้นส่วนเพื่ออนาคต)Venue(s)BangkokFollows2002Precedes2004Websiteapec2003.org APEC Thailand 2003[1][2] was a series of political meetings held around Thailand...

 

 

Village in Warmian-Masurian Voivodeship, PolandNawiadyVillageNawiadyCoordinates: 53°43′N 21°19′E / 53.717°N 21.317°E / 53.717; 21.317Country PolandVoivodeshipWarmian-MasurianCountyMrągowoGminaPiecki Nawiady [naˈvjadɨ] is a village in the administrative district of Gmina Piecki, within Mrągowo County, Warmian-Masurian Voivodeship, in northern Poland.[1] It lies approximately 4 kilometres (2 mi) south-west of Piecki, 17 km (11 mi) ...

الدوري التشيكوسلوفاكي 1973–74 تفاصيل الموسم الدوري التشيكوسلوفاكي  [لغات أخرى]‏  النسخة 67  البلد تشيكوسلوفاكيا  المنظم اتحاد جمهورية التشيك لكرة القدم  البطل نادي سلوفان براتيسلافا  مباريات ملعوبة 240   عدد المشاركين 16   الدوري التشيكوسلوفاكي 1972–73&#...

 

 

Diese Liste zählt die Mitglieder der Hamburgischen Bürgerschaft während der 15. Wahlperiode (1993–1997) auf. Inhaltsverzeichnis A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Bild Name Fraktion Anmerkungen Petra Adam-Ferger SPD Barbara Ahrons CDU Andreas Bachmann GAL Rolf-Peter Bakker SPD Ab dem 15. August 1996 Ausübung des Bürgerschaftsmandats eines Senators. Günter Barnbeck SPD Vom 6. Oktober bis 15. Dezember 1993 und ab dem 17. Januar 1995 Ausübung des Bürgerschaftsmandats e...

 

 

Artikel ini sebagian besar atau seluruhnya berasal dari satu sumber. Diskusi terkait dapat dibaca pada the halaman pembicaraan. Tolong bantu untuk memperbaiki artikel ini dengan menambahkan rujukan ke sumber lain yang tepercaya. Penghargaan Golden Globe untuk Aktris Pendukung Terbaik – FilmDiberikan kepadaPenampilan Terbaik seorang Aktris Pendukung dalam FilmNegaraAmerika SerikatDipersembahkan olehHollywood Foreign Press AssociationDiberikan perdana1944 (untuk pertunjukan dalam film yang di...

Extinct genus of fishes PycnosterinxTemporal range: Santonian[1] PreꞒ Ꞓ O S D C P T J K Pg N ↓ Pycnosterinx latus Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Actinopterygii Order: Polymixiiformes Family: Polymixiidae Genus: †PycnosterinxHeckel in Russegger, 1849 Pycnosterinx is an extinct genus of prehistoric bony fish that lived during the Santonian.[1] See also Paleontology portalFish portal Prehistoric fish List of prehi...

 

 

Early Christian ascetics, 3rd–5th centuries AD Desert Mothers Saint Paula and her daughter Eustochium with their spiritual advisor Saint Jerome—painting by Francisco de Zurbarán Desert Mothers is a neologism, coined in feminist theology as an analogy to Desert Fathers, for the ammas or female Christian ascetics living in the desert of Egypt, Palestine, and Syria in the 4th and 5th centuries AD.[1] They typically lived in the monastic communities that began forming during that tim...

 

 

内肛動物 スズコケムシ 分類 ドメイン : 真核生物 Eukaryota 界 : 動物界 Animalia 門 : 内肛動物門 Entoprocta 綱 本文参照 内肛動物(ないこうどうぶつ、Entoprocta)は、動物門のひとつで、ごく小型の固着性の動物からなる一群である。約150種が知られ、最もよく知られているのはスズコケムシであるが、その知名度とてごく微々たるものである。 概説 内肛動物門は群体または単体...

American TV series or program SiberiaGenre Drama Science fiction Horror[1] Created byMatthew ArnoldDirected by Matthew Arnold Herbert James Winterstern Slava N. Jakovleff Starring Joyce Giraud Johnny Wactor Esther Anderson Miljan Milosevic Daniel David Sutton Neeko O.J. Skervin Irene Yee Sam Dobbins Sabina Akhmedova Natalie Ann Scheetz Anne-Marie Mueschke Victoria Hill George Dickson Thomas Mountain Berglind Icey Harpreet Turka Jonathon Buckley Country of originUnited StatesOriginal ...

 

 

Étienne Jérôme Rouchouze BiografiKelahiran28 Februari 1798 Saint-Sauveur-en-Rue Kematian13 Maret 1843 (45 tahun)Samudra Pasifik Vicar apostolic (en) 14 Juni 1833 – Uskup tituler 14 Juni 1833 – Keuskupan: Nilopolis (en) Data pribadiKelompok etnikOrang Prancis AgamaGereja Katolik Roma KegiatanPekerjaanUskup di Gereja Katolik (1833–), imam Katolik KonsekrasiCarlo Maria Pedicini Étienne Jérôme Rouchouze SS.CC. (Chazeau, Loire 1798 - 1842 di laut) adalah misionar...