Steinmetz's equation

Steinmetz's equation, sometimes called the power equation,[1] is an empirical equation used to calculate the total power loss (core losses) per unit volume in magnetic materials when subjected to external sinusoidally varying magnetic flux.[2][3] The equation is named after Charles Steinmetz, a German-American electrical engineer, who proposed a similar equation without the frequency dependency in 1890.[4][5] The equation is:[2][3]

where is the time average power loss per unit volume in mW per cubic centimeter, is frequency in kilohertz, and is the peak magnetic flux density; , , and , called the Steinmetz coefficients, are material parameters generally found empirically from the material's B-H hysteresis curve by curve fitting. In typical magnetic materials, the Steinmetz coefficients all vary with temperature.

The energy loss, called core loss, is due mainly to two effects: magnetic hysteresis and, in conductive materials, eddy currents, which consume energy from the source of the magnetic field, dissipating it as waste heat in the magnetic material. The equation is used mainly to calculate core losses in ferromagnetic magnetic cores used in electric motors, generators, transformers and inductors excited by sinusoidal current. Core losses are an economically important source of inefficiency in alternating current (AC) electric power grids and appliances.

If only hysteresis is taken into account (à la Steinmetz), the coefficient will be close to 1 and will be 2 for nearly all modern magnetic materials. However, due to other nonlinearities, is usually between 1 and 2, and is between 2 and 3. The equation is a simplified form that only applies when the magnetic field has a sinusoidal waveform and does not take into account factors such as DC offset. However, because most electronics expose materials to non-sinusoidal flux waveforms, various improvements to the equation have been made. An improved generalized Steinmetz equation, often referred to as iGSE, can be expressed as[2][3]

where is the flux density from peak to peak and is defined by

where , and are the same parameters used in the original equation. This equation can calculate losses with any flux waveform using only the parameters needed for the original equation, but it ignores the fact that the parameters, and therefore the losses, can vary under DC bias conditions.[4] DC bias cannot be neglected without severely affecting results, but there is still not a practical physically-based model that takes both dynamic and nonlinear effects into account.[6] However, this equation is still widely used because most other models require parameters that are not usually given by manufacturers and that engineers are not likely to take the time and resources to measure.[1]

The Steinmetz coefficients for magnetic materials may be available from the manufacturers. However, manufacturers of magnetic materials intended for high-power applications usually provide graphs that plot specific core loss (watts per volume or watts per weight) at a given temperature against peak flux density , with frequency as a parameter. Families of curves for different temperatures may also be given. These graphs apply to the case where the flux density excursion is ±. In cases where the magnetizing field has a DC offset or is unidirectional (i.e. ranges between zero and a peak value), core losses can be much lower but are rarely covered by published data.

See also

References

  1. ^ a b Venkatachalam; et al. (2012). "Accurate Prediction of Ferrite Core Loss with Nonsinusoidal Waveforms Using Only Steinmetz Parameters" (PDF). Dartmouth College. Retrieved 2013-07-31.
  2. ^ a b c Sudhoff, Scott D. (2014). Power Magnetic Devices: A Multi-Objective Design Approach. John Wiley and Sons. pp. 168–169. ISBN 978-1-118-82463-4.
  3. ^ a b c Rashid, Muhammad H. (2017). Power Electronics Handbook, 4th Ed. Butterworth-Heinemann. p. 573. ISBN 978-0-12-811408-7.
  4. ^ a b J. Muhlethaler; J. Biela; J. W. Kolar; A. Ecklebe (February 2012). "Core Losses Under the DC Bias Condition Based on Steinmetz Parameters". IEEE Transactions on Power Electronics. 27 (2): 953. Bibcode:2012ITPE...27..953M. doi:10.1109/TPEL.2011.2160971. hdl:20.500.11850/39067. S2CID 47574741.
  5. ^ Steinmetz, Charles P. (1892). "On the law of hysteresis". Trans. AIEE. 9 (2): 3–62. doi:10.1109/PROC.1984.12842. S2CID 51668510.
  6. ^ Reinert, J.; Brockmeyer, A.; De Doncker, R.W. (1999). "Calculation of losses in ferro- and ferrimagnetic materials based on the modified Steinmetz equation". Conference Record of the 1999 IEEE Industry Applications Conference. Thirty-Forth IAS Annual Meeting (Cat. No.99CH36370). Vol. 3. pp. 2087–92. doi:10.1109/IAS.1999.806023. ISBN 978-0-7803-5589-7. S2CID 108718180.

Read other articles:

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: West Bengal Board of Madrasah Education – news · newspapers · books · scholar · JSTOR (November 2019) (Learn how and when to remove this template message) West Bengal Board of Madrasah Educationপশ্চিমবঙ্গ মাদ্রাসা শিক্

Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut...

:Page from the Zhubing Yuanhou Lun from a Yuan dynasty edition Chao Yuanfang (Chinese: 巢元方; pinyin: Cháo Yuánfāng) was a Chinese physician and medical author who was court physician at the Sui dynasty (581–618 CE) between the years 605 and 616. Traditionally, he had been attributed the co-authorship or authorship of the Chinese medical classic Zhubing yuanhou lun. This work sets out a classification of diseases and describes their causes and symptoms. It also discusses ther...

Festival Bir Beograd Festival Bir Beograd pada tahun 2009 Lokasi Ušće, Beograd, Serbia Tahun diselenggarakan 2003–sekarang Pendiri Tanggal 5 hari, setiap August15–19 August 2018 Genre Rock, pop, musik dunia, musik elektronik Situs web www.belgradebeerfest.com Festival Bir Beograd (bahasa Serbia: Београдски фестивал пива) adalah festival bir tahunan di kota Beograd, Serbia. Festival ini dimulai pada tahun 2003 dan diadakan setiap tahun pada bulan Agustus selama ...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Stadio Euganeo – news · newspapers · books · scholar · JSTOR (December 2009) (Learn how and when to remove this template message) Stadio EuganeoLocationPadua, ItalyOwnerMunicipality of PaduaCapacity32,420 (can be limited to 18,060 for football)SurfaceGrass105x6...

قرية الرفعى  - قرية -  تقسيم إداري البلد  اليمن المحافظة محافظة المحويت المديرية مديرية بني سعد العزلة عزلة دير الشريف السكان التعداد السكاني 2004 السكان 310   • الذكور 157   • الإناث 153   • عدد الأسر 59   • عدد المساكن 60 معلومات أخرى التوقيت توقيت اليمن (+3 غر�...

Indian actor, theatre personality Dattanna redirects here. For Indian politician, see Bandaru Dattatreya. Wing CommanderH. G. DattatreyaDattatreya in 2013Personal detailsBornHarihar Gundurao Dattatreya (1942-04-20) 20 April 1942 (age 81)Chitradurga, Kingdom of Mysore, British IndiaRelativesH. G. Somashekar Rao (brother)Alma materUVCE, BangaloreAir Force Technical CollegeIndian Institute of ScienceOccupationActorMilitary serviceAllegianceIndiaBranch/service Indian Air ForceYears ...

Immeuble au 1-2 allée Jean-BartPrésentationDestination initiale Hôtel particulierArchitecte Jean-Baptiste CeinerayConstruction XVIIIe sièclePatrimonialité  Inscrit MH (1945)LocalisationPays FranceRégion Pays de la LoireDépartement Loire-AtlantiqueCommune NantesAdresse 1-2, allée Jean-BartCoordonnées 47° 12′ 52″ N, 1° 33′ 19″ OLocalisation sur la carte de FranceLocalisation sur la carte de Nantesmodifier - modifier le code - modifier W...

ノルデア銀行Nordea Bank Abp ヘルシンキのグローバル本部種類 公開会社市場情報 Nasdaq Nordic NDA FINasdaq Nordic NDA SENasdaq Nordic NDA DK本社所在地  フィンランド00020Satamaradankatu 5, ヘルシンキ設立 2001年 (22年前) (2001)事業内容 金融業代表者 Frank Vang-Jensen(CEO)従業員数 29,000人(2019年現在)決算期 12月31日主要株主 サンポ(20%)外部リンク Nordea Groupテンプレートを表示 ノル...

  此條目介紹的是其他以英格瑞或英格麗德命名熱帶氣旋。关于其他用法,请见「熱帶氣旋英格瑞」。 超强台风英格丽德Typhoon Ingrid(英文)1946年7月18日的天氣圖(由日本氣象廳繪畫)路徑圖超强台风英格丽德的路徑圖十分鐘平均風速颱風(JMA)175 km/h(95 kt)強颱風 (HKO)175 km/h二分鐘平均風速强台风 (CMA)175 km/h(48 m/s)一分鐘平均風速�...

Research institution in London, England For other uses of Institute of Psychiatry, see Institute of Psychiatry (disambiguation). Institute of Psychiatry, Psychology & Neuroscience, King's College LondonEstablished1948[1]Parent institutionKing's College LondonDeanMatthew HotopfLocationSE5 8AF, London, United KingdomWebsitewww.kcl.ac.uk/ioppn twitter.com/KingsIoPPN The Institute of Psychiatry, Psychology & Neuroscience (IoPPN) is a leading centre for mental health and neuroscien...

Гіві КартозіяКартозія Гіві Олександрович Загальна інформаціяНаціональність грузинГромадянство  Грузія СРСРМісце проживання ТбілісіНародження 29 березня 1929(1929-03-29)Батумі, Аджарська АРСР, ЗРФСР, Грузинська РСР, СРСРСмерть 3 квітня 1998(1998-04-03) (69 років)Тбілісі, ГрузіяЗ�...

オタカル・オストルチルOtakar Ostrčil 基本情報生誕 (1879-02-25) 1879年2月25日出身地 オーストリア=ハンガリー帝国 プラハ死没 (1935-08-20) 1935年8月20日(56歳没) チェコスロバキア プラハ学歴 カレル大学ジャンル クラシック音楽職業 作曲家指揮者 ポータル クラシック音楽 オタカル・オストルチル(Otakar Ostrčil, *1879年2月25日 プラハ - †1935年8月20日 同地)はチェコの作�...

Dam in Gunma Prefecture, Japan.Shirasuna DamLocationGunma Prefecture, Japan. Shirasuna Dam is a dam in the Gunma Prefecture of Japan, completed in 1940.[1] References ^ Shirasuna Dam [Gunma Pref.] - Dams in Japan. vteDams in Gunma Prefecture Aimata Dam Fujiwara Dam Kusaki Dam Nakagi Dam Naramata Dam Nozori Dam Sakamoto Dam Shimagawa Dam Shimokubo Dam Shinaki Dam Shinsui Dam Shirasuna Dam Sonohara Dam Sudagai Dam Takatsudo Dam Tamahara Dam Ueno Dam Yagisawa Dam Yanba Dam This artic...

Statue of Venus (modest Venus) For the chamber opera, see The Capitoline Venus (opera). The Capitoline Venus (Capitoline Museums). The Capitoline Venus is a type of statue of Venus, specifically one of several Venus Pudica (modest Venus) types (others include the Venus de' Medici type), of which several examples exist. The type ultimately derives from the Aphrodite of Cnidus. The Capitoline Venus and her variants are recognisable from the position of the arms—standing after a bath, Venu...

Defunct American motor vehicle manufacturer Mason Road King bus in The Netherlands, 1922 1924 Mason Road King truck at the Sloan Museum Motor vehicle Mason TruckPowertrainEnginegasoline Mason Motors, founded by A. C. Mason in cooperation with William C. Durant, was a U.S. truck manufacturer based in Flint, Michigan. As a subsidiary of Durant Motors, Mason Truck built Road King Speed Trucks in the early 1920s. Mason Motors also built automobile engines in 1911, who first led Buick's engine wor...

Plaza in Addis Ababa, Ethiopia View from Meskel Square Traffic in Meskel Square Meskel Square (Amharic: መስቀል አደባባይ, romanized: mesik’el ādebabay, lit. 'Cross Square') is a public square in the city of Addis Ababa, Ethiopia. It is often a site for public gatherings or for demonstrations and festivals, notably, the Meskel Festival from which it takes its name. History Emperor Haile Selassie I seen celebrating the finding of the cross at Meskel Square in 1...

Цю сторінку запропоновано перейменувати на Ужгородський катедральний собор. Можливо, її поточна назва не відповідає нормам української мови або правилам іменування статей у Вікіпедії.Пояснення причин і обговорення — на сторінці Вікіпедія:Перейменування статей. �...

Bridge in Jamaica, St. Catherine ParishFlat BridgeCoordinates18°03′40.50″N 76°59′04″W / 18.0612500°N 76.98444°W / 18.0612500; -76.98444Carries1 laneCrossesRio CobreLocaleJamaica, St. Catherine ParishCharacteristicsDesignBeam BridgeTotal length45 metres (148 ft)Width4 metres (13 ft)Longest span32 metres (105 ft)Clearance aboveunlimitedHistoryOpenedaround 1770StatisticsTollnoneLocation Flat Bridge The Flat Bridge is a beam bridge across the Rio...

Sculptures by George Grey Barnard Musician Dying and The BirthLabor and Love and SolitudeThe Visitation The Urn of Life (modeled 1898-1900, carved 1905-1906) is an allegorical sculpture by George Grey Barnard in the collection of the Carnegie Museum of Art in Pittsburgh, Pennsylvania, United States.[1] Carved from white Carrara marble, it is 37.875 in (96.20 cm) in height, 32.25 in (81.9 cm) in diameter,[1] and weighs approximately 1,650 lb (750 k...