Magnetic flux

Magnetic flux
Common symbols
Φ, ΦB
SI unitweber (Wb)
Other units
maxwell
In SI base unitskgm2s−2A−1
DimensionM L2 T−2 I−1

In physics, specifically electromagnetism, the magnetic flux through a surface is the surface integral of the normal component of the magnetic field B over that surface. It is usually denoted Φ or ΦB. The SI unit of magnetic flux is the weber (Wb; in derived units, volt–seconds), and the CGS unit is the maxwell.[1] Magnetic flux is usually measured with a fluxmeter, which contains measuring coils, and it calculates the magnetic flux from the change of voltage on the coils.

Description

The magnetic flux through a surface—when the magnetic field is variable—relies on splitting the surface into small surface elements, over which the magnetic field can be considered to be locally constant. The total flux is then a formal summation of these surface elements (see surface integration).
Each point on a surface is associated with a direction, called the surface normal; the magnetic flux through a point is then the component of the magnetic field along this direction.

The magnetic interaction is described in terms of a vector field, where each point in space is associated with a vector that determines what force a moving charge would experience at that point (see Lorentz force).[1] Since a vector field is quite difficult to visualize, introductory physics instruction often uses field lines to visualize this field. The magnetic flux through some surface, in this simplified picture, is proportional to the number of field lines passing through that surface (in some contexts, the flux may be defined to be precisely the number of field lines passing through that surface; although technically misleading, this distinction is not important). The magnetic flux is the net number of field lines passing through that surface; that is, the number passing through in one direction minus the number passing through in the other direction (see below for deciding in which direction the field lines carry a positive sign and in which they carry a negative sign).[2] More sophisticated physical models drop the field line analogy and define magnetic flux as the surface integral of the normal component of the magnetic field passing through a surface. If the magnetic field is constant, the magnetic flux passing through a surface of vector area S is where B is the magnitude of the magnetic field (the magnetic flux density) having the unit of Wb/m2 (tesla), S is the area of the surface, and θ is the angle between the magnetic field lines and the normal (perpendicular) to S. For a varying magnetic field, we first consider the magnetic flux through an infinitesimal area element dS, where we may consider the field to be constant: A generic surface, S, can then be broken into infinitesimal elements and the total magnetic flux through the surface is then the surface integral From the definition of the magnetic vector potential A and the fundamental theorem of the curl the magnetic flux may also be defined as: where the line integral is taken over the boundary of the surface S, which is denoted S.

Magnetic flux through a closed surface

Some examples of closed surfaces (left) and open surfaces (right). Left: Surface of a sphere, surface of a torus, surface of a cube. Right: Disk surface, square surface, surface of a hemisphere. (The surface is blue, the boundary is red.)

Gauss's law for magnetism, which is one of the four Maxwell's equations, states that the total magnetic flux through a closed surface is equal to zero. (A "closed surface" is a surface that completely encloses a volume(s) with no holes.) This law is a consequence of the empirical observation that magnetic monopoles have never been found.

In other words, Gauss's law for magnetism is the statement:

\oiint

for any closed surface S.

Magnetic flux through an open surface

For an open surface Σ, the electromotive force along the surface boundary, ∂Σ, is a combination of the boundary's motion, with velocity v, through a magnetic field B (illustrated by the generic F field in the diagram) and the induced electric field caused by the changing magnetic field.

While the magnetic flux through a closed surface is always zero, the magnetic flux through an open surface need not be zero and is an important quantity in electromagnetism.

When determining the total magnetic flux through a surface only the boundary of the surface needs to be defined, the actual shape of the surface is irrelevant and the integral over any surface sharing the same boundary will be equal. This is a direct consequence of the closed surface flux being zero.

Changing magnetic flux

For example, a change in the magnetic flux passing through a loop of conductive wire will cause an electromotive force, and therefore an electric current, in the loop. The relationship is given by Faraday's law: where

  • is the electromotive force (EMF),
  • the minus-sign represents Lenz's Law,
  • ΦB is the magnetic flux through the open surface Σ,
  • ∂Σ is the boundary of the open surface Σ; the surface, in general, may be in motion and deforming, and so is generally a function of time. The electromotive force is induced along this boundary.
  • d is an infinitesimal vector element of the contour ∂Σ,
  • v is the velocity of the boundary ∂Σ,
  • E is the electric field,
  • B is the magnetic field.

The two equations for the EMF are, firstly, the work per unit charge done against the Lorentz force in moving a test charge around the (possibly moving) surface boundary ∂Σ and, secondly, as the change of magnetic flux through the open surface Σ. This equation is the principle behind an electrical generator.

Area defined by an electric coil with three turns.

Comparison with electric flux

By way of contrast, Gauss's law for electric fields, another of Maxwell's equations, is

\oiint

where

The flux of E through a closed surface is not always zero; this indicates the presence of "electric monopoles", that is, free positive or negative charges.

See also

References

  1. ^ a b Purcell, Edward; Morin, David (2013). Electricity and Magnetism (3rd ed.). New York: Cambridge University Press. p. 278. ISBN 978-1-107-01402-2.
  2. ^ Browne, Michael (2008). Physics for Engineering and Science (2nd ed.). McGraw-Hill/Schaum. p. 235. ISBN 978-0-07-161399-6.

External articles

Read other articles:

American comedian and actor (1926–2009) Soupy SalesSales on Lunch With Soupy Sales in 1960Birth nameMilton SupmanBorn(1926-01-08)January 8, 1926Franklinton, North Carolina, U.S.DiedOctober 22, 2009(2009-10-22) (aged 83)The Bronx, New York, U.S.MediumTelevisionradiofilmYears active1949–2009GenresSlapstick, word play, improvisation[1]Spouse Barbara Fox ​ ​(m. 1950; div. 1979)​ Trudy Carson ​(m. 1980)...

جزيرة هاولاند   معلومات جغرافية   المنطقة جزر فينيكس  الموقع المحيط الهادئ  الإحداثيات 0°48′24″N 176°36′59″W / 0.80666666666667°N 176.61638888889°W / 0.80666666666667; -176.61638888889  [1] [2] المسطح المائي المحيط الهادئ  المساحة 2.6 كيلومتر مربع[3]  الطول 2.8 كيلومتر  ال

Alfons van de Maele Alfons van de Maele op de omslag van Pallieter Persoonsgegevens Bijnaam Werkman-dichter Geboren Erembodegem, 22 januari 1874 Overleden Erembodegem, 1 oktober 1938 Geboorteland België Nationaliteit Belg Beroep(en) Dichter, arbeider Oriënterende gegevens Leermeester Emiel Fleerackers Beïnvloed door Guido Gezelle, Hendrik Conscience Portaal    Kunst & Cultuur Jan Alfons van de Maele beter bekend als Fonske van de Maele (Erembodegem, 22 januari 1874 - aldaar, ...

Slavkovský štít Slavkovský štít von Nová Lesná Höhe 2452 m n.m. Lage Prešovský kraj, Slowakei Gebirge Hohe Tatra, Karpaten Koordinaten 49° 9′ 58″ N, 20° 11′ 5″ O49.16621666666720.1846055555562452Koordinaten: 49° 9′ 58″ N, 20° 11′ 5″ O Slavkovský štít (Slowakei) Gestein Granodiorit Erstbesteigung 1664 Der Slavkovský štít (deutsch Schlagendorfer Spitze, ungarisch Nagyszalóki-csúcs, polni...

PulseLegoCảnh ở ngoài hộp đêm năm 2006Tên đầy đủPulse OrlandoĐịa chỉ1912 South Orange AvenueVị tríOrlando, Florida, Hoa KỳTọa độ28°31′11″B 81°22′37″T / 28,51961°B 81,37683°T / 28.51961; -81.37683Chủ sở hữu Barbara Poma Ron Legler Khánh thành2 tháng 7 năm 2004; 19 năm trước (2004-07-02)Đóng cửa12 tháng 6 năm 2016; 7 năm trước (2016-06-12)Trang webhttps://onepulsefound...

Capital city of the Czech Republic Praha redirects here. For other uses, see Praha (disambiguation). This article is about the capital of the Czech Republic. For other uses, see Prague (disambiguation). Capital city in Czech RepublicPrague Praha (Czech)Capital cityPanorama with Prague CastleNational TheatrePankrác districtOld Town SquareMalá Strana FlagCoat of armsWordmarkMottoes: Praga Caput Rei publicae (Latin)[1]Prague, Head of the Republic other historical mottos ...

Wilhelm Sohn, Foto Constantin Luck, nach 1884 Karl Rudolf Sohn als junger Mann, Gemälde von Wilhelm Sohn, 1858, zuletzt gezeigt in der Schau Kinderbildnisse aus drei Jahrhunderten, 17., 18. und 19. Jahrhundert in der Alten Kunsthalle Düsseldorf, 1937 Wilhelm Sohn, gemalt von Otto Sohn-Rethel 1893 Johann August Wilhelm Sohn (* 29. August 1829 in Berlin; † 16. März 1899 in Pützchen bei Bonn) war ein deutscher Maler der Düsseldorfer Schule. Inhaltsverzeichnis 1 Leben 2 Lehrtätigkeit 3 We...

この記事には複数の問題があります。改善やノートページでの議論にご協力ください。 出典がまったく示されていないか不十分です。内容に関する文献や情報源が必要です。(2022年11月) 独立記事作成の目安を満たしていないおそれがあります。(2022年11月)出典検索?: 兵庫県道128号居組港居組停車場線 – ニュース · 書籍 · スカラー · CiNii ...

Ulla Grigat Ulla Grigat (* 1943 in Bannewitz[1]) ist eine deutsche Malerin der konkreten Kunst. Inhaltsverzeichnis 1 Leben 2 Ausstellungen (Auswahl) 3 Arbeiten im öffentlichen Besitz und Sammlungen (Auswahl) 4 Arbeiten im öffentlichen Raum 5 Literatur 6 Weblinks 7 Einzelnachweise Leben Ulla Grigat wurde 1943 in Bannewitz, einer kleinen Gemeinde südlich von Dresden, in der sächsischen Schweiz geboren. Sie wuchs in Karlsruhe als Tochter einer Dachdeckerfamilie auf und lernte bis 196...

كوم الحاصل  -  قرية مصرية -  تقسيم إداري البلد  مصر المحافظة محافظة المنيا المركز مغاغة المسؤولون السكان التعداد السكاني 5235 نسمة (إحصاء 2006) معلومات أخرى التوقيت ت ع م+02:00  تعديل مصدري - تعديل   قرية كوم الحاصل هي إحدى القرى التابعة لمركز مغاغة بمحافظة المنيا ف...

Petar Mladenow als Außenminister, 1978 Petar Toschew Mladenow (bulg. Петър Тошев Младенов) (* 22. August 1936 in Toschewtschi in der Oblast Widin, Königreich Bulgarien; † 31. Mai 2000 in Sofia, Bulgarien) war ein bulgarischer Diplomat und Politiker. Mladenow wurde als Sohn einer Bauernfamilie in der Ortschaft Toschewtschi in der Oblast Widin geboren. Sein Vater war ein antifaschistischer Partisan, der 1944 fiel. Nach Beendigung der Militärakademie ging Mladenow an die U...

Polish Catholic prelate His Excellency, The Most ReverendJan Romeo PawłowskiApostolic Nuncio to GreeceTitular Archbishop of SejnyArchbishop Pawłowski in Brazzaville in 2009.ChurchRoman Catholic ChurchAppointed1 December 2022PredecessorSavio Hon Tai-FaiOther post(s)Titular Archbishop of SejnyOrdersOrdination1 June 1985by Józef GlempConsecration30 April 2009by Tarcisio BertonePersonal detailsBornJan Romeo Pawłowski (1960-11-23) 23 November 1960 (age 63)Biskupiec, PolandNation...

Public school examination in Malaysia abolished in 2014 This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article possibly contains original research. Please improve it by verifying the claims made and adding inline citations. Statements consisting only of original research should be removed. (December 2009) (Learn how and when to remove this template message) This article needs additi...

Rudi DarmokoWakil Kepala Kepolisian Daerah Sulawesi UtaraMasa jabatan13 Oktober 2020 – 26 Juli 2021PendahuluYadi SuryadinataPenggantiJhonny Edison Isir Informasi pribadiLahir7 Desember 1971 (umur 52)JakartaOrang tuaLetkol Inf. (Purn.) Jumadi (Alm) (ayah)Alma materAkademi Kepolisian (1993)Penghargaan sipilAdhi Makayasa (1993)Karier militerPihak IndonesiaDinas/cabang Sekolah Staf dan Pimpinan Lemdiklat PolriMasa dinas1993—sekarangPangkat Inspektur Jenderal PolisiSatu...

Katharevousa (καθαρεύουσα) /kaTa'revusa/, adalah sebuah bentuk bahasa Yunani yang diciptakan oleh Adamantios Korais pada abad ke 18. Peran bahasa ini ialah sebuah bentuk transisi antara bahasa Yunani kuno dan Modern (kala itu). Sebenarnya Katharevousa mengandung bentuk-bentuk modern yang ‘dikunokan’ dan tatabahasa kuno yang disederhanakan. Tujuan diciptakannya bahasa ini ialah adanya perseteruan antara kaum ‘arkhais’ dan kaum ‘modernis’.. Kaum arkhais memilih menggunaka...

فيزياء طبيةصنف فرعي من فيزياء — علم الأشعة جزء من فيزياء — طب — medical and biological physics (en) يمتهنه عالم فيزياء طبية تعديل - تعديل مصدري - تعديل ويكي بيانات الفيزياء الطبية هي أحد تخصصات الفيزياء التطبيقية في المجالات الطبية، وخصوصا في تشخيص وعلاج الامراض. تاريخ الفيزياء الطبية رب�...

Museo del Holocausto Ex Sub-Usina “Montevideo” (CIAE) UbicaciónPaís  ArgentinaLocalidad Buenos AiresDirección Montevideo 919Coordenadas 34°35′54″S 58°23′23″O / -34.5982, -58.3897Tipo y coleccionesTipo PrivadoSuperficie 2.500 m²Historia y gestiónCreación 25 de septiembre de 2000Inauguración 25 de septiembre de 2000Administrador Fundación Memoria del HolocaustoPresidente Marcelo Mindlin[1]​Información del edificioConstrucción ca. 1915 (edificio...

This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Sean T. Drinkwater – news · newspapers · books · scholar · JSTOR (March 2020) (Learn how and when to remove this template message) Sean performing...

Daftar berikut menuliskan gedung pencakar langit di Hong Kong dengan tinggi sekurang-kurangnya 180 m (591 ft), berdasarkan standar pengukuran ketinggian. Daftar ini mencakup menara dan detail arsitektur, tetapi tidak termasuk tiang antena. Kolom Tahun menunjukkan tahun pada saat sebuah bangunan selesai dibangun. Daftar Per. Nama[C] Foto Tinggi[D]m (ft) Lantai[D][E] Pemakaian Tahun Koordinat Keterangan 001.0 1 International Commerce Centre 484 (1,588) 108 Hotel, Perkantoran 2010 22°...

SpeedyTypeInternet service providerCountry IndonesiaAvailabilityNationalMottoTrue BroadbandOwnerTelkom IndonesiaLaunch date2004 Speedy was the trade name for broadband internet services offered by Telkom Indonesia. As of December 2014[update], it offered a range of packages for download speeds between 512 kbit/s and 100Mbit/s, with some plans including additional advertising inserted by Telkom.[1] Speedy was replaced in 2015 with the fiber-based IndiHome. Slogans Aks...