Stanley–Wilf conjecture

The Stanley–Wilf conjecture, formulated independently by Richard P. Stanley and Herbert Wilf in the late 1980s, states that the growth rate of every proper permutation class is singly exponential. It was proved by Adam Marcus and Gábor Tardos (2004) and is no longer a conjecture. Marcus and Tardos actually proved a different conjecture, due to Zoltán Füredi and Péter Hajnal (1992), which had been shown to imply the Stanley–Wilf conjecture by Klazar (2000).

Statement

The Stanley–Wilf conjecture states that for every permutation β, there is a constant C such that the number |Sn(β)| of permutations of length n which avoid β as a permutation pattern is at most Cn. As Arratia (1999) observed, this is equivalent to the convergence of the limit

The upper bound given by Marcus and Tardos for C is exponential in the length of β. A stronger conjecture of Arratia (1999) had stated that one could take C to be (k − 1)2, where k denotes the length of β, but this conjecture was disproved for the permutation β = 4231 by Albert et al. (2006). Indeed, Fox (2013) has shown that C is, in fact, exponential in k for almost all permutations.

Allowable growth rates

The growth rate (or Stanley–Wilf limit) of a permutation class is defined as

where an denotes the number of permutations of length n in the class. Clearly not every positive real number can be a growth rate of a permutation class, regardless of whether it is defined by a single forbidden pattern or a set of forbidden patterns. For example, numbers strictly between 0 and 1 cannot be growth rates of permutation classes.

Kaiser & Klazar (2002) proved that if the number of permutations in a class of length n is ever less than the nth Fibonacci number then the enumeration of the class is eventually polynomial. Therefore, numbers strictly between 1 and the golden ratio also cannot be growth rates of permutation classes. Kaiser and Klazar went on to establish every possible growth constant of a permutation class below 2; these are the largest real roots of the polynomials

for an integer k ≥ 2. This shows that 2 is the least accumulation point of growth rates of permutation classes.

Vatter (2011) later extended the characterization of growth rates of permutation classes up to a specific algebraic number κ≈2.20. From this characterization, it follows that κ is the least accumulation point of accumulation points of growth rates and that all growth rates up to κ are algebraic numbers. Vatter (2019) established that there is an algebraic number ξ≈2.31 such that there are uncountably many growth rates in every neighborhood of ξ, but only countably many growth rates below it. Pantone & Vatter (2020) characterized the (countably many) growth rates below ξ, all of which are also algebraic numbers. Their results also imply that in the set of all growth rates of permutation classes, ξ is the least accumulation point from above.

In the other direction, Vatter (2010) proved that every real number at least 2.49 is the growth rate of a permutation class. That result was later improved by Bevan (2018), who proved that every real number at least 2.36 is the growth rate of a permutation class.

See also

Notes

References

Read other articles:

LG dan Life's Good dialihkan ke halaman ini. Untuk kegunaan lain, lihat LG (disambiguasi) dan Life Is Good (disambiguasi). Artikel ini memerlukan pemutakhiran informasi. Harap perbarui artikel dengan menambahkan informasi terbaru yang tersedia. LG Corporation주식회사 LGSebelumnyaLucky-Goldstar (1983–1995)JenisPublikKode emitenKRX: 003550IndustriKonglomeratDidirikan5 Januari 1947; 77 tahun lalu (1947-01-05)PendiriKoo In-hwoiKantorpusatSeoul, Korea SelatanWilayah operasiSeluruh dunia...

 

Akmal Ikramov Akmal Ikramovich Ikramov (1898–1938) adalah seorang politikus Uzbekistan yang aktif dalam politik Republik Sosialis Soviet Uzbek dan menjabat sebagai Sekretaris Pertama Komite Pusat Partai Komunis Uzbekistan dari 1929 sampai 1937. Ia ditangkap dan dieksekusi pada 1938 sebagai bagian dari Pembersihan Besar-Besaran pada zaman Stalin. Sumber Ikramov, Akmal’ Ikramovich article from The Great Soviet Encyclopedia, 3rd Edition (1970-1979). To Moscow, Not Mecca: The Soviet Campaign ...

 

Fondation MacArthur (en) Committed to building a more just, verdant, and peaceful world.HistoireFondation 6 janvier 19781970CadreType Private foundationForme juridique CharitéSiège Marquette BuildingChicago (60603, États-Unis)IllinoisPays  États-UnisOrganisationFondateurs John D. MacArthur (en), Catherine T. MacArthur (en)Récompense Peabody AwardsSite web (en) www.macfound.orgmodifier - modifier le code - modifier Wikidata La fondation John D. et Catherine T. MacArthur est...

la Sonne La Sonne à Prissac, en 2020. la Sonne sur OpenStreetMap. Caractéristiques Longueur 33,5 km [1] Bassin collecteur Loire Nombre de Strahler 3 Organisme gestionnaire SMABCAC Régime Pluvial Cours Source Bazaiges · Localisation Bazaiges · Altitude 229 m · Coordonnées 46° 29′ 39″ N, 1° 31′ 49″ E Confluence l'Abloux · Localisation Prissac · Altitude 105 m · Coordonnées 46° 31′ 03″ N, 1° 15′ 3...

 

33rd Governor of Ohio Thomas Lowry Young33rd Governor of OhioIn officeMarch 2, 1877 – January 14, 1878LieutenantH. W. CurtissPreceded byRutherford B. HayesSucceeded byRichard M. Bishop12th Lieutenant Governor of OhioIn officeJanuary 10, 1876 – March 2, 1877GovernorRutherford B. HayesPreceded byAlphonso HartSucceeded byH. W. CurtissMember of the U.S. House of Representativesfrom Ohio's 2nd districtIn officeMarch 4, 1879 – March 3, 1883Preced...

 

Les Slaves méridionaux sont une branche des peuples slaves qui ont migré dans les Balkans aux VIe et VIIe siècles et qui parlent des langues issues du vieux-slave méridional. Les Slaves du Sud parmi les autres Slaves. Histoire Origine et expansion des Slaves (Ve-Xe siècles) Vers 200 de notre ère, des individus liés aux populations des steppes nomades balto-slaves et du nord-est de l'Europe commencent à apparaître dans les Balkans. Ces mouvements culminent pendant la...

Cet article est une ébauche concernant une université et Paris. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Faculté des lettres de ParisHistoireFondation 1808Dissolution 1970Prédécesseur Faculté des arts de ParisSuccesseurs Université Paris-I-Panthéon-Sorbonne, université Sorbonne-Nouvelle, université Paris-Sorbonne, université Paris-Descartes, université Paris-DiderotCadreType FacultéPays  ...

 

1936 film This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Avenging Waters – news · newspapers · books · scholar · JSTOR (May 2019) (Learn how and when to remove this template message) Avenging WatersTheatrical release posterDirected bySpencer Gordon BennetWritten byNate GatzertProduced byLarry DarmourStarrin...

 

Air Djibouti IATA ICAO Kode panggil IV DJU AIR DJIB DidirikanApril 1963 (1963-04)Mulai beroperasiApril 1964 (1964-04); Agustus 2015 (2015-08)PenghubungBandar Udara Internasional Djibouti-AmbouliKantor pusatDjiboutiTokoh utama Aboubaker Omar Hadi (Ketua)[1] Situs webwww.air-djibouti.comAir Djibouti, juga dikenal dengan Red Sea Airlines, maskapai penerbangan nasional Djibouti. Terbang perdana pada tahun 1963 dan menghentikan semua operasi penerbangan pada tahun 2002....

Election for governor of Maryland, U.S. 1919 Maryland gubernatorial election ← 1915 November 4, 1919 1923 →   Nominee Albert Ritchie Harry Nice Party Democratic Republican Popular vote 112,240 112,075 Percentage 49.06% 48.99% County results Ritchie:      40–50%      50–60% Nice:      40–50%      50–60%      60–70% Governor befor...

 

ХристианствоБиблия Ветхий Завет Новый Завет Евангелие Десять заповедей Нагорная проповедь Апокрифы Бог, Троица Бог Отец Иисус Христос Святой Дух История христианства Апостолы Хронология христианства Раннее христианство Гностическое христианство Вселенские соборы Н...

 

Белошейная зонотрихия Самец и его песня Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКл...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Agustus 2020. Oluwakemi Adekoya Oluwakemi Adekoya (lahir 16 Januari 1993) adalah pelari atletik Nigeria yang berkompetisi mewakili Bahrain. Ia merupakan spesialis nomor 400m gawang putri dengan pencapaian waktu terbaiknya 54.59 detik– sebuah prestasi yang mencetak...

 

2016年美國總統選舉 ← 2012 2016年11月8日 2020 → 538個選舉人團席位獲勝需270票民意調查投票率55.7%[1][2] ▲ 0.8 %   获提名人 唐納·川普 希拉莉·克林頓 政党 共和黨 民主党 家鄉州 紐約州 紐約州 竞选搭档 迈克·彭斯 蒂姆·凱恩 选举人票 304[3][4][註 1] 227[5] 胜出州/省 30 + 緬-2 20 + DC 民選得票 62,984,828[6] 65,853,514[6]...

 

Typeface PlantinCategorySerifClassificationOld style serifDesigner(s)Robert GranjonFrank Hinman PierpontFritz StelzerFoundryMonotypeDate created1913 Plantin is an old-style serif typeface. It was created in 1913 by the British Monotype Corporation for their hot metal typesetting system and is named after the sixteenth-century printer Christophe Plantin.[1] It is loosely based on a Gros Cicero roman type cut in the 16th century by Robert Granjon held in the collection of the Plantin–...

Danish writer, storyteller, musician and artist This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (November 2011) (Learn how and when to remove this message) Rune T. Kidde (2012) Rune Torstein Kidde (27 September 1957 – 21 October 2013) was a Danish writer, storyteller, musician and artist.[1] He was the son of illustrator and painter Thormod Kidde (19...

 

2007 MLBオールスターゲーム 会場となったAT&Tパーク   1 2 3 4 5 6 7 8 9 R H E AL 0 0 0 0 2 1 0 2 0 5 10 0 NL 1 0 0 0 0 1 0 0 2 4 9 1 開催日時 2007年7月10日開催球場 AT&Tパーク開催地 カリフォルニア州サンフランシスコ最優秀選手 イチロー (SEA)観客数 43,965人 ← 2006 MLBオールスターゲーム 2008 → テンプレートを表示 2007年のMLBオールスターゲームはアメリカンリーグとナ...

 

Device used by Harry Harlow to study rhesus monkeys A rhesus monkey infant in one of Harlow's isolation chambers. The photograph was taken when the chamber door was raised for the first time after six months of total isolation.[1] Animal testing Main articles Animal testing Alternatives to animal testing Animal testing regulations History of animal testing History of model organisms IACUC Laboratory animal sources Pain and suffering in laboratory animals Testing cosmetics on animals T...

日本の政治家小宮山 重四郎こみやま じゅうしろう 1962年10月、ホワイトハウスにて生年月日 1927年9月15日出生地 山梨県甲府市没年月日 (1994-11-21) 1994年11月21日(67歳没)死没地 東京都新宿区(東京医科大学病院)出身校 中央大学予科日本大学法文学部早稲田大学政治経済学部アルフレッド大学(en)所属政党 自由民主党配偶者 小宮山乃理子子女 長女・小宮山泰子(衆議...

 

Czech actress (1947–2023) Jana ŠulcováŠulcová in 2015Born(1947-02-12)12 February 1947Prague, CzechoslovakiaDied28 July 2023(2023-07-28) (aged 76)Prague, Czech RepublicOccupation(s)Stage, film and television actressSpouse Oldřich Vízner ​(div. 1988)​ Jana Šulcová (12 February 1947 – 28 July 2023) was a Czech actress. Early life and career Jana Šulcová was born in Prague on 12 February 1947.[1] She studied acting at the Academy of Performi...