Second polar moment of area

The second polar moment of area, also known (incorrectly, colloquially) as "polar moment of inertia" or even "moment of inertia", is a quantity used to describe resistance to torsional deformation (deflection), in objects (or segments of an object) with an invariant cross-section and no significant warping or out-of-plane deformation.[1] It is a constituent of the second moment of area, linked through the perpendicular axis theorem. Where the planar second moment of area describes an object's resistance to deflection (bending) when subjected to a force applied to a plane parallel to the central axis, the polar second moment of area describes an object's resistance to deflection when subjected to a moment applied in a plane perpendicular to the object's central axis (i.e. parallel to the cross-section). Similar to planar second moment of area calculations (,, and ), the polar second moment of area is often denoted as . While several engineering textbooks and academic publications also denote it as or , this designation should be given careful attention so that it does not become confused with the torsion constant, , used for non-cylindrical objects.

Simply put, the polar moment of area is a shaft or beam's resistance to being distorted by torsion, as a function of its shape. The rigidity comes from the object's cross-sectional area only, and does not depend on its material composition or shear modulus. The greater the magnitude of the second polar moment of area, the greater the torsional stiffness of the object.

Definition

A schematic showing how the second polar moment of area is calculated for an arbitrary shape about an axis . Where is the radial distance to the element .

The equation describing the polar moment of area is a multiple integral over the cross-sectional area, , of the object.

where is the distance to the element .

Substituting the and components, using the Pythagorean theorem:

Given the planar second moments of area equations, where:

It is shown that the polar moment of area can be described as the summation of the and planar moments of area, and

This is also shown in the perpendicular axis theorem.[2] For objects that have rotational symmetry,[3] such as a cylinder or hollow tube, the equation can be simplified to: or

For a circular section with radius :

Unit

The SI unit for polar second moment of area, like the planar second moment of area, is meters to the fourth power (m4), and inches to the fourth power (in4) in U.S. Customary units and imperial units.

Limitations

The polar second moment of area can be insufficient for use to analyze beams and shafts with non-circular cross-sections, due their tendency to warp when twisted, causing out-of-plane deformations. In such cases, a torsion constant should be substituted, where an appropriate deformation constant is included to compensate for the warping effect. Within this, there are articles that differentiate between the polar second moment of area, , and the torsional constant, , no longer using to describe the polar second moment of area.[4]

In objects with significant cross-sectional variation (along the axis of the applied torque), which cannot be analyzed in segments, a more complex approach may have to be used. See 3-D elasticity.

Application

Though the polar second moment of area is most often used to calculate the angular displacement of an object subjected to a moment (torque) applied parallel to the cross-section, the provided value of rigidity does not have any bearing on the torsional resistance provided to an object as a function of its constituent materials. The rigidity provided by an object's material is a characteristic of its shear modulus, . Combining these two features with the length of the shaft, , one is able to calculate a shaft's angular deflection, , due to the applied torque, :

As shown, the larger the material's shear modulus and polar second moment of area (i.e. larger cross-sectional area), the greater resistance to torsional deflection.

The polar second moment of area appears in the formulae that describe torsional stress and angular displacement.

Torsional stresses: where is the torsional shear stress, is the applied torque, is the distance from the central axis, and is the polar second moment of area.

Note: In a circular shaft, the shear stress is maximal at the surface of the shaft.

Sample calculation

The rotor of a modern steam turbine.

Calculation of the steam turbine shaft radius for a turboset:

Assumptions:

  • Power carried by the shaft is 1000 MW; this is typical for a large nuclear power plant.
  • Yield stress of the steel used to make the shaft (τyield) is: 250 × 106 N/m2.
  • Electricity has a frequency of 50 Hz; this is the typical frequency in Europe. In North America the frequency is 60 Hz. This is assuming that there is a 1:1 correlation between rotational velocity of turbine and the frequency of mains power.

The angular frequency can be calculated with the following formula:

The torque carried by the shaft is related to the power by the following equation:

The angular frequency is therefore 314.16 rad/s and the torque 3.1831 × 106 N·m.

The maximal torque is:

After substitution of the polar second moment of area the following expression is obtained:

The radius is r=0.200 m = 200 mm, or a diameter of 400 mm. If one adds a factor of safety of 5 and re-calculates the radius with the admissible stress equal to the τadm=τyield/5 the result is a radius of 0.343 m, or a diameter of 690 mm, the approximate size of a turboset shaft in a nuclear power plant.

Comparing polar second moments of area and moments of inertia (second moments of mass)

Hollow Cylinder

Polar second moment of area:

Moment of inertia:

Solid cylinder

Polar second moment of area

Moment of inertia where:

  • is the inner diameter in meters (m)
  • is the outer diameter in meters (m)
  • is the moment of inertia in kg·m2
  • is the polar second moment of area in meters to the fourth power (m4)
  • is the length of cylinder in meters (m)
  • is the specific mass in kg/m3

See also

References

  1. ^ Ugural AC, Fenster SK. Advanced Strength and Applied Elasticity. 3rd Ed. Prentice-Hall Inc. Englewood Cliffs, NJ. 1995. ISBN 0-13-137589-X.
  2. ^ "Moment Of Inertia; Definition with examples". www.efunda.com.
  3. ^ Obregon, Joaquin (2012). Mechanical Simmetry. Author House. ISBN 978-1-4772-3372-6.
  4. ^ galtor. "What is the difference between the Polar Second Moment of Area ("Polar Moment of Inertia"), IPIP and the torsional constant, JTJT of a cross section?".

Read other articles:

Peta infrastruktur dan tata guna lahan di Komune Rancon.  = Kawasan perkotaan  = Lahan subur  = Padang rumput  = Lahan pertanaman campuran  = Hutan  = Vegetasi perdu  = Lahan basah  = Anak sungaiRancon merupakan sebuah komune di departemen Haute-Vienne di Prancis. Lihat pula Komune di departemen Haute-Vienne Referensi INSEE lbsKomune di departemen Haute-Vienne Aixe-sur-Vienne Ambazac Arnac-la-Poste Augne Aureil Azat-le-Ris Balledent La Bazeuge Beaumont-...

 

Glenea lefebvrei Klasifikasi ilmiah Kerajaan: Animalia Filum: Arthropoda Kelas: Insecta Ordo: Coleoptera Famili: Cerambycidae Subfamili: Lamiinae Tribus: Saperdini Genus: Glenea Spesies: Glenea lefebvrei Glenea lefebvrei adalah spesies kumbang tanduk panjang yang tergolong famili Cerambycidae. Spesies ini juga merupakan bagian dari genus Glenea, ordo Coleoptera, kelas Insecta, filum Arthropoda, dan kingdom Animalia. Larva kumbang ini biasanya mengebor ke dalam kayu dan dapat menyebabkan keru...

 

陆军第十四集团军炮兵旅陆军旗存在時期1950年 - 2017年國家或地區 中国效忠於 中国 中国共产党部門 中国人民解放军陆军種類炮兵功能火力支援規模约90门火炮直屬南部战区陆军參與戰役1979年中越战争 中越边境冲突 老山战役 成都军区对越轮战 紀念日10月25日 陆军第十四集团军炮兵旅(英語:Artillery Brigade, 14th Army),是曾经中国人民解放军陆军第十四集团军下属�...

Halaman ini berisi artikel tentang film. Untuk hubungan antar pribadi, lihat Perkawinan. PerkawinanSutradaraWim UmbohProduserAnnie MamboDitulis olehWim UmbohNarto ErawanPemeranSophan SophiaanWidyawatiKusno SudjarwadiDicky ZulkarnaenRahayu EffendiKomalasariRd MochtarYan BastianEmilia ContessaPenata musikIdris SardiSuparman SidikSinematograferGaby MamboLukman Hakim NaimPenyuntingWim UmbohUraoka K.DistributorAries Raya InternationalFar Eastern Film CoTanggal rilis1972Durasi109 menitNegaraI...

 

Подольский полугрошик Подо́льский полугро́шик — название монет, которые чеканили в городах Смотрич и Каменец-Подольский для Подольского княжества. Выпускались во времена правления князя Константина Кориатовича (с 1380 до 1391 год) и князя Фёдора Кориатовича (1388—1394). На �...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Magnetosphere particle motion – news · newspapers · books · scholar · JSTOR (June 2016) (Learn how and when to remove this template message) This article may require cleanup to meet Wikipedia's quality standards. The specific problem is: Layout of mathematical ...

Station of the Tehran Metro Ne'mat Abad Metro Stationایستگاه مترو نعمت آبادTehran Metro StationGeneral informationLocation Cheraghi Expressway, Districts 17-19, Tehran, Tehran CountyTehran Province, IranOperated byTehran Urban and Suburban Railways Organization (Metro)Connections Tehran BRT  BRT 10  HistoryOpened18 Aban, 1394 H-Sh (9 November 2015)Services Preceding station Tehran Metro Following station Abdol Abadtowards Ghaem AzadeganTerminus Ne'mat Abad Metro S...

 

Pour les articles homonymes, voir BM. Biologie moléculaireGéométrie de la double hélice d'ADN B montrant le petit et le grand sillon ainsi que le détail des deux types de paires de bases : thymine–adénine en haut et cytosine–guanine en bas.Partie de BiologiePratiqué par Biologiste moléculaire (d)Champs EnzymologieObjet Moléculemodifier - modifier le code - modifier Wikidata La biologie moléculaire (parfois abrégée bio. mol.) est une discipline scientifique de la vie au c...

 

Michael BiehnLahirMichael Connell Biehn31 Juli 1956 (umur 67)[1]Anniston, Alabama, U.S.PekerjaanAktorTahun aktif1977–sekarangSuami/istri Carlene Olson ​ ​(m. 1980; c. 1987)​ Gina Marsh ​ ​(m. 1988; c. 2014)​ Jennifer Blanc ​(m. 2015)​ Michael Connell Biehn (/ˈbiːn/ been; lahir 31 Juli 1956) adalah aktor Amerika, terutama dikenal karena perannya da...

Voce principale: Novara Calcio. Novara CalcioStagione 2000-2001Sport calcio Squadra Novara Allenatore Carlo Garavaglia poi Antonio Varallo poi Stefano Civeriati Presidente Claudio Achilli Serie C216º posto nel girone A. Maggiori presenzeCampionato: Righi (33) Miglior marcatoreCampionato: Gay (6) 1999-2000 2001-2002 Si invita a seguire il modello di voce Divise e sponsor 1ª divisa 2ª divisa Rosa N. Ruolo Calciatore C Graziano Beltrami C Sergio Maria Borgo C Edoardo Braiati C Massimili...

 

British physicist (born 1961) Michael CatesFRS FRSE HonFInstPCates in 2012BornMichael Elmhirst Cates (1961-05-05) 5 May 1961 (age 62)Bristol, England, United KingdomCitizenshipUnited KingdomEducationTrinity College, Cambridge (PhD)AwardsMaxwell Medal and Prize (1991) Paul Dirac Medal and Prize (2009) Weissenberg Award (2013) Bingham Medal (2016)Scientific careerFieldsPhysics Soft matterInstitutionsUniversity of Cambridge University of EdinburghThesisThe statistical mechanics of c...

 

此条目序言章节没有充分总结全文内容要点。 (2019年3月21日)请考虑扩充序言,清晰概述条目所有重點。请在条目的讨论页讨论此问题。 哈萨克斯坦總統哈薩克總統旗現任Қасым-Жомарт Кемелұлы Тоқаев卡瑟姆若马尔特·托卡耶夫自2019年3月20日在任任期7年首任努尔苏丹·纳扎尔巴耶夫设立1990年4月24日(哈薩克蘇維埃社會主義共和國總統) 哈萨克斯坦 哈萨克斯坦政府...

Questa voce sull'argomento battaglie è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Attacco a Camp Hollwayparte Guerra del VietnamL'entrata della base fotografata nel 1965Data6 febbraio 1965 LuogoCamp Holloway vicino Pleiku, Vietnam del Sud EsitoVittoria tattica Vietcong,Gli USA lanciano l'Operazione Flaming Dart per rappresaglia Schieramenti Stati Uniti Vietnam del Sud Vietcong Perdite9 mor...

 

Private university in Minnesota It has been suggested that Bethel Theological Seminary be merged into this article. (Discuss) Proposed since December 2023.Bethel UniversityFormer namesBaptist Union Theological Seminary (1871–1931)[1]Bethel Junior College (1931–1947)Bethel College and Seminary (1947–2004)TypePrivate universityEstablished1871; 153 years ago (1871)Religious affiliationConvergeAcademic affiliationsNAICUCCCUCCCCICSpace-grantEndowment$39.5 million (2...

 

Logo Heineken Heineken PilsenerKarakteristikJenisPilsner dan beer brand AsalBelanda Komposisiair hop malted barley Penyiapanlow fermentation Diperkenalkan1874 ProdusenHeineken Brewery Kadar alkohol5 vol% Situs webhttp://www.heineken.com/, https://www.heineken.co.uk dan http://heineken.com [sunting di Wikidata]lbs Heineken, juga disebut sebagai Heineken Lager Beer (Belanda: Heineken Pilsenercode: nl is deprecated ) adalah bir Belanda dengan kadar alkohol 5%. Bir ini dibuat oleh H...

Prisoner at Guantanamo Bay detention camp Ammar al-BaluchiBaluchi's detainee assessment memorandum by the U.S. Department of Defense, 8 December 2006BornAli Abdul Aziz Ali (1977-08-29) 29 August 1977 (age 46)[1]Al Ahmadi, KuwaitArrested29 April 2003Karachi, PakistanCitizenshipPakistaniDetained at Guantánamo Bay, CubaISN10018OccupationComputer technicianSpouse Aafia Siddiqui ​ ​(m. 2003; div. 2003)​RelativesKhalid Sheikh Mohamm...

 

1942 film by Mark Sandrich Holiday InnTheatrical release posterDirected byMark SandrichScreenplay byClaude BinyonElmer Rice (adaptation)Story byIrving BerlinProduced byMark SandrichStarring Bing Crosby Fred Astaire Marjorie Reynolds Virginia Dale Walter Abel CinematographyDavid AbelEdited byEllsworth HoaglandMusic byIrving BerlinProductioncompanyParamount PicturesDistributed byParamount PicturesRelease date August 4, 1942 (1942-08-04) Running time100 minutesCountryUnited States...

 

Parte de Relaciones España-Marruecos en el marco del Conflicto del Sahara Occidental Mapa de Ceuta y Melilla en el norte de África, junto a otros territorios españoles.LocalizaciónPaís España y MarruecosLugar Ciudad Autónoma de Ceuta Ciudad Autónoma de Melilla Reino de EspañaCoordenadas 35°53′12″N 5°18′00″O / 35.88667, -5.3Datos generalesTipo incidente internacional y crisis migratoriaCausa Ingreso hospitalario de Brahim Ghali bajo una identidad falsa en un...

NCAA Division 1 Men's Basketball Program LSU Tigers men's basketball 2023–24 LSU Tigers men's basketball team UniversityLouisiana State UniversityFirst season1909All-time record1,656–1,253 (.569)Athletic directorScott WoodwardHead coachMatt McMahon (2nd season)ConferenceSoutheastern ConferenceLocationBaton Rouge, LouisianaArenaPete Maravich Assembly Center (Capacity: 13,472)NicknameTigersColorsPurple and gold[1]   Uniforms Home Away Alternate NCAA tourname...

 

بطولة كرة القدم الألمانية 1932-33 تفاصيل الموسم بطولة كرة القدم الألمانية  [لغات أخرى]‏  النسخة 26  البلد الرايخ الألماني  التاريخ بداية:7 مايو 1933  نهاية:11 يونيو 1933  المنظم الاتحاد الألماني لكرة القدم  البطل فورتونا دوسلدورف  مباريات ملعوبة 15   عدد ال...