Deflection (engineering)

Deflection (f) in engineering

In structural engineering, deflection is the degree to which a part of a long structural element (such as beam) is deformed laterally (in the direction transverse to its longitudinal axis) under a load. It may be quantified in terms of an angle (angular displacement) or a distance (linear displacement). A longitudinal deformation (in the direction of the axis) is called elongation.

The deflection distance of a member under a load can be calculated by integrating the function that mathematically describes the slope of the deflected shape of the member under that load. Standard formulas exist for the deflection of common beam configurations and load cases at discrete locations. Otherwise methods such as virtual work, direct integration, Castigliano's method, Macaulay's method or the direct stiffness method are used. The deflection of beam elements is usually calculated on the basis of the Euler–Bernoulli beam equation while that of a plate or shell element is calculated using plate or shell theory.

An example of the use of deflection in this context is in building construction. Architects and engineers select materials for various applications.

Beam deflection for various loads and supports

Beams can vary greatly in their geometry and composition. For instance, a beam may be straight or curved. It may be of constant cross section, or it may taper. It may be made entirely of the same material (homogeneous), or it may be composed of different materials (composite). Some of these things make analysis difficult, but many engineering applications involve cases that are not so complicated. Analysis is simplified if:

  • The beam is originally straight, and any taper is slight
  • The beam experiences only linear elastic deformation
  • The beam is slender (its length to height ratio is greater than 10)
  • Only small deflections are considered (max deflection less than 1/10 of the span).

In this case, the equation governing the beam's deflection () can be approximated as: where the second derivative of its deflected shape with respect to ( being the horizontal position along the length of the beam) is interpreted as its curvature, is the Young's modulus, is the area moment of inertia of the cross-section, and is the internal bending moment in the beam.

If, in addition, the beam is not tapered and is homogeneous, and is acted upon by a distributed load , the above expression can be written as:

This equation can be solved for a variety of loading and boundary conditions. A number of simple examples are shown below. The formulas expressed are approximations developed for long, slender, homogeneous, prismatic beams with small deflections, and linear elastic properties. Under these restrictions, the approximations should give results within 5% of the actual deflection.

Cantilever beams

Cantilever beams have one end fixed, so that the slope and deflection at that end must be zero.

Schematic of the deflection of a cantilever beam.

End-loaded cantilever beams

Cantilever beam with a force on the free end

The elastic deflection and angle of deflection (in radians) at the free end in the example image: A (weightless) cantilever beam, with an end load, can be calculated (at the free end B) using:[1] where

Note that if the span doubles, the deflection increases eightfold. The deflection at any point, , along the span of an end loaded cantilevered beam can be calculated using:[1]

Note: At (the end of the beam), the and equations are identical to the and equations above.

Uniformly loaded cantilever beams

Cantilever beam with a uniform distributed load

The deflection, at the free end B, of a cantilevered beam under a uniform load is given by:[1] where

  • = uniform load on the beam (force per unit length)
  • = length of the beam
  • = modulus of elasticity
  • = area moment of inertia of cross section

The deflection at any point, , along the span of a uniformly loaded cantilevered beam can be calculated using:[1]

Simply supported beams

Simply supported beams have supports under their ends which allow rotation, but not deflection.

Schematic of the deflection of a simply supported beam.

Center-loaded simple beams

Simply supported beam with a force in the center

The deflection at any point, , along the span of a center loaded simply supported beam can be calculated using:[1] for

The special case of elastic deflection at the midpoint C of a beam, loaded at its center, supported by two simple supports is then given by:[1] where

  • = force acting on the center of the beam
  • = length of the beam between the supports
  • = modulus of elasticity
  • = area moment of inertia of cross section

Off-center-loaded simple beams

Simply supported beam with a force off center

The maximum elastic deflection on a beam supported by two simple supports, loaded at a distance from the closest support, is given by:[1] where

  • = force acting on the beam
  • = length of the beam between the supports
  • = modulus of elasticity
  • = area moment of inertia of cross-section
  • = distance from the load to the closest support

This maximum deflection occurs at a distance from the closest support and is given by:[1]

Uniformly loaded simple beams

Simply supported beam with a uniform distributed load

The elastic deflection (at the midpoint C) on a beam supported by two simple supports, under a uniform load (as pictured) is given by:[1] where

  • = uniform load on the beam (force per unit length)
  • = length of the beam
  • = modulus of elasticity
  • = area moment of inertia of cross section

The deflection at any point, , along the span of a uniformly loaded simply supported beam can be calculated using:[1]

Combined loads

The deflection of beams with a combination of simple loads can be calculated using the superposition principle.

Change in length

The change in length of the beam, projected along the line of the unloaded beam, can be calculated by integrating the slope function, if the deflection function is known for all .

Where:

  • = change in length (always negative)
  • = slope function (first derivative of )
  • [2]

If the beam is uniform and the deflection at any point is known, this can be calculated without knowing other properties of the beam.

Units

The formulas supplied above require the use of a consistent set of units. Most calculations will be made in the International System of Units (SI) or US customary units, although there are many other systems of units.

International system (SI)

  • Force: newtons ()
  • Length: metres ()
  • Modulus of elasticity:
  • Moment of inertia:

US customary units (US)

  • Force: pounds force ()
  • Length: inches ()
  • Modulus of elasticity:
  • Moment of inertia:

Others

Other units may be used as well, as long as they are self-consistent. For example, sometimes the kilogram-force () unit is used to measure loads. In such a case, the modulus of elasticity must be converted to .

Structural deflection

Building codes determine the maximum deflection, usually as a fraction of the span e.g. 1/400 or 1/600. Either the strength limit state (allowable stress) or the serviceability limit state (deflection considerations among others) may govern the minimum dimensions of the member required.

The deflection must be considered for the purpose of the structure. When designing a steel frame to hold a glazed panel, one allows only minimal deflection to prevent fracture of the glass.

The deflected shape of a beam can be represented by the moment diagram, integrated (twice, rotated and translated to enforce support conditions).

See also

References

  1. ^ a b c d e f g h i j Gere, James M.; Goodno, Barry J. (January 2012). Mechanics of Materials (Eighth ed.). pp. 1083–1087. ISBN 978-1-111-57773-5.
  2. ^ Roark's Formulas for Stress and Strain, 8th Edition Eq 8.1-14

Read other articles:

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Desember 2023. Bart Biemans Informasi pribadiNama lengkap Bart BiemansTanggal lahir 14 Maret 1988 (umur 36)Tempat lahir Neerpelt, BelgiaTinggi 1,83 m (6 ft 0 in)[1]Posisi bermain BekInformasi klubKlub saat ini Roda JC KerkradeNomor 3Karie...

 

Patung makam Aleksander di Katedral St. Stephan, Wina. Aleksander dari Masovia (Bahasa Polandia: Aleksander mazowiecki; 1400 - 2 Juni 1444) merupakan seorang pangeran Polandia yang merupakan anggota keluarga Wangsa Piast dari cabang Masovia. Ia merupakan Uskup Trento sejak tahun 1425, bergelar Patriarkat Aquileia sejak tahun 1439, Kardinal yang ditunjuk oleh Antipaus Feliks V sebagai keuskupan St. Lawrence di Damaskus (San Lorenzo in Damaso) sejak tahun 1440, bergelar Uskup Chur sejak tahun 1...

 

في هذه المقالة ألفاظ تعظيم تمدح موضوع المقالة، وهذا مخالف لأسلوب الكتابة الموسوعية. فضلاً، أَزِل ألفاظ التفخيم واكتفِ بعرض الحقائق بصورة موضوعية ومجردة ودون انحياز. (نقاش)جزء من سلسلة مقالات حولالشيعة العقيدة توحيد الله الإيمان بالملائكة الإيمان بالكتب السماوية الإيمان ...

Sketsa ninja karya seniman Hokusai. Teknik cetak kayu di atas kertas. Hokusai manga, volume enam, 1817. Ninja atau Shinobi (忍者 atau 忍びcode: ja is deprecated ) (dalam bahasa Jepang, secara harfiah berarti Seseorang yang bergerak secara rahasia) adalah seorang mata - mata zaman feodal di Jepang yang terlatih dalam seni ninjutsu (secara kasarnya seni pergerakan sunyi) Jepang. Ninja, seperti samurai, mematuhi peraturan khas mereka sendiri, yang disebut ninpo. Menurut sebagian pengamat nin...

 

Pour les articles homonymes, voir Qilin (homonymie) et Kirin. Qilin Statue d'un qilin de style Qing devant le Palais d'été. Créature Autres noms (zh) qílín(ko) kirin(ja) kirin(vi) kỳ lân Groupe créature mythologique Origines Origines mythologie chinoise Région Chine et d'autres pays d'Asie de l'Est de la sphère culturelle chinoise modifier - modifier le code - voir Wikidata (aide) Le qilin, k'ilin, kiling ou kirin (chinois : 麒麟, pinyin : qílín, EFEO : ...

 

В Википедии есть статьи о других людях с такой фамилией, см. Вернадский. Владимир Иванович Вернадскийукр. Володи́мир Іва́нович Верна́дський В. И. Вернадский в 1889 году Дата рождения 28 февраля (12 марта) 1863[1] Место рождения Санкт-Петербург, Российская империя[2] Дата с...

Santo Vincent Ferrer, O.P.Religious, priest and confessor, called the Angel of the Last JudgmentLahir(1350-01-23)23 Januari 1350Valencia, Kerajaan ValenciaMeninggal5 April 1419(1419-04-05) (umur 69)Vannes, Duchy of BrittanyDihormati diGereja Katolik Roma, Komuni Anglikan, Gereja AglipayanKanonisasi3 Juni 1455, Roma oleh Paus Calixtus IIITempat ziarahKatedral VannesVannes, Morbihan, PrancisPesta5 AprilAtributtongue of flame; pulpit; trompet; tahanan; sayap; AlkitabPelindungkontraktor, pek...

 

Untuk artikel tentang daging dari hewan ini, lihat daging kalkun. Kalkun Periode 23–0 jtyl PreЄ Є O S D C P T J K Pg N Miosen Awal – Sekarang Meleagris Rekaman TaksonomiKerajaanAnimaliaFilumChordataKelasAvesOrdoGalliformesFamiliPhasianidaeGenusMeleagris Linnaeus, 1758 Tata namaDinamakan berdasarkanPeru SpesiesM. gallopavo M. ocellatalbs Meleagris gallopavo Kalkun atau ayam kalkun adalah sebutan untuk dua spesies burung berukuran besar dari ordo Galliformes genus Meleagris. Kalkun b...

 

Royaume-Uniau Concours Eurovision 1988 Données clés Pays  Royaume-Uni Chanson Go Interprète Scott Fitzgerald Compositeur Julie Forsyth Langue Anglais Sélection nationale Radiodiffuseur BBC Type de sélection A Song for Europe 1988 Date 25 mars 1988 Lieu Studio 1, Londres, Royaume-Uni Concours Eurovision de la chanson 1988 Position en finale 2e (136 points) 1987 1989 modifier Le Royaume-Uni était représenté au Concours Eurovision de la chanson 1988 par le chanteur Scott Fitzgerald...

العلاقات الدنماركية البنمية الدنمارك بنما   الدنمارك   بنما تعديل مصدري - تعديل   العلاقات الدنماركية البنمية هي العلاقات الثنائية التي تجمع بين الدنمارك وبنما.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة ا�...

 

artikel ini perlu dirapikan agar memenuhi standar Wikipedia. Tidak ada alasan yang diberikan. Silakan kembangkan artikel ini semampu Anda. Merapikan artikel dapat dilakukan dengan wikifikasi atau membagi artikel ke paragraf-paragraf. Jika sudah dirapikan, silakan hapus templat ini. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Hard Rock FMJenisJaringan radioSloganThe First Lifestyle & Entertainment StationNegaraIndonesiaKetersediaanNasionalTanggal siaran perdana20 Ap...

 

Keuskupan Valle de ChalcoDioecesis Vallis ChalcensisDiócesis de Valle de ChalcoKatolik LokasiNegaraMeksikoProvinsi gerejawiProvinsi TlalnepantlaStatistikLuas477 sq mi (1.240 km2)Populasi- Total- Katolik(per 2010)2.613.0002,302,000 (88.1%)Paroki56InformasiDenominasiKatolik RomaRitusRitus RomaPendirian8 Juli 2003 (20 tahun lalu)KatedralKatedral St. Juan DiegoKepemimpinan kiniPausFransiskusUskupVíctor René Rodríguez GómezUskup agungCarlos Aguiar RetesPetaS...

نادي لوفيرواز تأسس عام 26 يناير 1913  البلد بلجيكا  الدوري الدوري البلجيكي الدرجة الثالثة  الموقع الرسمي الموقع الرسمي  تعديل مصدري - تعديل   نادي اتحاد ريال لوفيرواز الرياضي (بالفرنسية: Royale Association Athlétique Louviéroise)‏ نادي كرة قدم بلجيكي .[1] تم تأسيس النادي في سنة 19...

 

Use of armored fighting vehicles in war This article is about the military doctrine. For the vehicle, see Lists of armoured fighting vehicles. Armored Brigade redirects here. For the video game, see Armored Brigade (video game). A shooting contest between Leopard 2A6 tanks during the Strong Europe Tank Challenge in 2018 Part of a series onWar History Prehistoric Ancient Post-classical Early modern napoleonic Late modern industrial fourth-gen Military Organization Command and control Defense m...

 

Peta Lora del Rio dalam Peta Topografi Nasional Spanyol. Skala yang digunakan ialah 1:25.000. Lora del Río merupakan sebuah kota yang terletak di wilayah Provinsi Sevilla, Andalusia, Spanyol Lihat juga Daftar munisipalitas di Seville Daftar munisipalitas di Spanyol lbsKota di Provinsi Sevilla Aguadulce Alanís Albaida del Aljarafe Alcalá de Guadaíra Alcalá del Río Alcolea del Río Algámitas Almadén de la Plata Almensilla Arahal Aznalcázar Aznalcóllar Badolatosa Benacazón Bollullos d...

Boundary around the ancient city of Rome For the musical group, see Pomerium (early music group). Map of Rome in the time of the Roman Republic. The pomerium at that time is marked in pink; the Capitoline and Aventine are extra pomerium, 'beyond the wall', with their boundaries in yellow. The pomerium or pomoerium was a religious boundary around the city of Rome and cities controlled by Rome. In legal terms, Rome existed only within its pomerium; everything beyond it was simply territory (age...

 

Malignancy that develops from epithelial cells Not to be confused with carcinoid, which is sometimes a type of carcinoma but is more often benign. Medical conditionCarcinomaMicrograph of a lung primary small cell carcinoma, a type of carcinoma. The clustered cancerous cells consist primarily of nucleus (purple); they have only a scant rim of cytoplasm. The surrounding pale staining, discoid cells are red blood cells. Cytopathology specimen. Field stain.SpecialtyOncology Carcinoma is a maligna...

 

Wahyu Tjiptaningsih Wakil Bupati Cirebon ke-7PetahanaMulai menjabat 10 Februari 2021PresidenJoko WidodoGubernurRidwan Kamil Bey Machmudin (Pj.)PendahuluImron RosyadiPenggantiPetahana Informasi pribadiLahir15 April 1970 (umur 54)Bandung, IndonesiaPartai politikPDI PerjuanganSuami/istriDr. H. Sunjaya Purwadi Sastra, M.M., M.Si.Anak4PekerjaanPolitisiSunting kotak info • L • B Hj. Wahyu Tjiptaningsih, S.E., M.Si. (lahir 15 April 1970) yang akrab dipanggil Ayu adalah Wak...

رابطة ببتيدية الرابطة الببتيدية[1] هي رابطة تساهمية كيميائية تنشئ بين جزئين، عندما تتفاعل مجموعة الكربوكسيل -COOH لأحد الأحماض الأمينية مع مجموعة أمين -NH2 لحمض أميني آخر، وينتج عن هذا التفاعل تكون جزيء من الماء H2O ورابطة ببتيدية، ويسمى هذا التفاعل بتفاعل التكثيف، وتحدث غ�...

 

إسقاط تمثال صدام حسين في ساحة الفردوس ببغداد بعد وقت قصير من غزو العراق 2003. حادثة ساحة الفردوس هي تفكيك وتدمير تمثال صدام حسين في ساحة الفردوس بالعاصمة بغداد أثناء غزو العراق في عام 2003، بواسطة جنود القوات المسلحة الأمريكية. لهذا الحدث أهمية سياسية ورمزية كبيرة. الدلالة في أ...