Schur complement

The Schur complement of a block matrix, encountered in linear algebra and the theory of matrices, is defined as follows.

Suppose p, q are nonnegative integers such that p + q > 0, and suppose A, B, C, D are respectively p × p, p × q, q × p, and q × q matrices of complex numbers. Let so that M is a (p + q) × (p + q) matrix.

If D is invertible, then the Schur complement of the block D of the matrix M is the p × p matrix defined by If A is invertible, the Schur complement of the block A of the matrix M is the q × q matrix defined by In the case that A or D is singular, substituting a generalized inverse for the inverses on M/A and M/D yields the generalized Schur complement.

The Schur complement is named after Issai Schur[1] who used it to prove Schur's lemma, although it had been used previously.[2] Emilie Virginia Haynsworth was the first to call it the Schur complement.[3] The Schur complement is a key tool in the fields of numerical analysis, statistics, and matrix analysis. The Schur complement is sometimes referred to as the Feshbach map after a physicist Herman Feshbach.[4]

Background

The Schur complement arises when performing a block Gaussian elimination on the matrix M. In order to eliminate the elements below the block diagonal, one multiplies the matrix M by a block lower triangular matrix on the right as follows: where Ip denotes a p×p identity matrix. As a result, the Schur complement appears in the upper-left p×p block.

Continuing the elimination process beyond this point (i.e., performing a block Gauss–Jordan elimination), leads to an LDU decomposition of M, which reads Thus, the inverse of M may be expressed involving D−1 and the inverse of Schur's complement, assuming it exists, as The above relationship comes from the elimination operations that involve D−1 and M/D. An equivalent derivation can be done with the roles of A and D interchanged. By equating the expressions for M−1 obtained in these two different ways, one can establish the matrix inversion lemma, which relates the two Schur complements of M: M/D and M/A (see "Derivation from LDU decomposition" in Woodbury matrix identity § Alternative proofs).

Properties

  • If p and q are both 1 (i.e., A, B, C and D are all scalars), we get the familiar formula for the inverse of a 2-by-2 matrix:
provided that AD − BC is non-zero.
  • In general, if A is invertible, then
whenever this inverse exists.
  • (Schur's formula) When A, respectively D, is invertible, the determinant of M is also clearly seen to be given by
, respectively
,
which generalizes the determinant formula for 2 × 2 matrices.
  • (Guttman rank additivity formula) If D is invertible, then the rank of M is given by
  • (Haynsworth inertia additivity formula) If A is invertible, then the inertia of the block matrix M is equal to the inertia of A plus the inertia of M/A.
  • (Quotient identity) .[5]
  • The Schur complement of a Laplacian matrix is also a Laplacian matrix.[6]

Application to solving linear equations

The Schur complement arises naturally in solving a system of linear equations such as[7]

.

Assuming that the submatrix is invertible, we can eliminate from the equations, as follows.

Substituting this expression into the second equation yields

We refer to this as the reduced equation obtained by eliminating from the original equation. The matrix appearing in the reduced equation is called the Schur complement of the first block in :

.

Solving the reduced equation, we obtain

Substituting this into the first equation yields

We can express the above two equation as:

Therefore, a formulation for the inverse of a block matrix is:

In particular, we see that the Schur complement is the inverse of the block entry of the inverse of .

In practice, one needs to be well-conditioned in order for this algorithm to be numerically accurate.

This method is useful in electrical engineering to reduce the dimension of a network's equations. It is especially useful when element(s) of the output vector are zero. For example, when or is zero, we can eliminate the associated rows of the coefficient matrix without any changes to the rest of the output vector. If is null then the above equation for reduces to , thus reducing the dimension of the coefficient matrix while leaving unmodified. This is used to advantage in electrical engineering where it is referred to as node elimination or Kron reduction.

Applications to probability theory and statistics

Suppose the random column vectors X, Y live in Rn and Rm respectively, and the vector (X, Y) in Rn + m has a multivariate normal distribution whose covariance is the symmetric positive-definite matrix

where is the covariance matrix of X, is the covariance matrix of Y and is the covariance matrix between X and Y.

Then the conditional covariance of X given Y is the Schur complement of C in :[8]

If we take the matrix above to be, not a covariance of a random vector, but a sample covariance, then it may have a Wishart distribution. In that case, the Schur complement of C in also has a Wishart distribution.[citation needed]

Conditions for positive definiteness and semi-definiteness

Let X be a symmetric matrix of real numbers given by Then

  • If A is invertible, then X is positive definite if and only if A and its complement X/A are both positive definite:[2]: 34 
  • If C is invertible, then X is positive definite if and only if C and its complement X/C are both positive definite:
  • If A is positive definite, then X is positive semi-definite if and only if the complement X/A is positive semi-definite:[2]: 34 
  • If C is positive definite, then X is positive semi-definite if and only if the complement X/C is positive semi-definite:

The first and third statements can be derived[7] by considering the minimizer of the quantity as a function of v (for fixed u).

Furthermore, since and similarly for positive semi-definite matrices, the second (respectively fourth) statement is immediate from the first (resp. third) statement.

There is also a sufficient and necessary condition for the positive semi-definiteness of X in terms of a generalized Schur complement.[2] Precisely,

  • and

where denotes a generalized inverse of .

See also

References

  1. ^ Schur, J. (1917). "Über Potenzreihen die im Inneren des Einheitskreises beschränkt sind". J. reine u. angewandte Mathematik. 147: 205–232. doi:10.1515/crll.1917.147.205.
  2. ^ a b c d Zhang, Fuzhen (2005). Zhang, Fuzhen (ed.). The Schur Complement and Its Applications. Numerical Methods and Algorithms. Vol. 4. Springer. doi:10.1007/b105056. ISBN 0-387-24271-6.
  3. ^ Haynsworth, E. V., "On the Schur Complement", Basel Mathematical Notes, #BNB 20, 17 pages, June 1968.
  4. ^ Feshbach, Herman (1958). "Unified theory of nuclear reactions". Annals of Physics. 5 (4): 357–390. doi:10.1016/0003-4916(58)90007-1.
  5. ^ Crabtree, Douglas E.; Haynsworth, Emilie V. (1969). "An identity for the Schur complement of a matrix". Proceedings of the American Mathematical Society. 22 (2): 364–366. doi:10.1090/S0002-9939-1969-0255573-1. ISSN 0002-9939. S2CID 122868483.
  6. ^ Devriendt, Karel (2022). "Effective resistance is more than distance: Laplacians, Simplices and the Schur complement". Linear Algebra and Its Applications. 639: 24–49. arXiv:2010.04521. doi:10.1016/j.laa.2022.01.002. S2CID 222272289.
  7. ^ a b Boyd, S. and Vandenberghe, L. (2004), "Convex Optimization", Cambridge University Press (Appendix A.5.5)
  8. ^ von Mises, Richard (1964). "Chapter VIII.9.3". Mathematical theory of probability and statistics. Academic Press. ISBN 978-1483255385.

Read other articles:

Emma RigbyRigby, 2021LahirEmma Catherine Rigby26 September 1989 (umur 34)[1]St Helens, InggrisPekerjaanAktris, modelTahun aktif2002–sekarang Emma Catherine Rigby (lahir 26 September 1989)[2] adalah seorang aktris asal Inggris. Dia terkenal karena perannya sebagai Hannah Ashworth dalam Hollyoaks, dia kemudian bermain selaku Gemma Roscol dalam serial drama BBC One Prisoners' Wives dan sebagai Ratu Merah dalam drama fantasi Amerika bertajuk Once Upon a Time in Wonder...

 

Grigory KiriyenkoInformasi pribadiLahir29 September 1965 (umur 58)Moskwa, SFSR Rusia, Uni Soviet OlahragaOlahragaAnggar Rekam medali Anggar putra Olimpiade Mewakili  Tim Gabungan 1992 Barcelona Tim sabel Mewakili  Rusia 1996 Atlanta Tim sabel Grigory Anatolyevich Kiriyenko (Rusia: Григорий Анатольевич Кириенкоcode: ru is deprecated ) (lahir 29 September 1965 di Novosibirsk) adalah seorang atlet anggar asal Rusia. Ia memenangkan dua medali Oimpiade ema...

 

المسلخ الخامس Slaughterhouse-Five غلاف الطبعة الأولى معلومات الكتاب المؤلف كورت فونيجت اللغة الإنجليزية  الناشر دار النشر ديل  تاريخ النشر مارس 1969  النوع الأدبي كوميديا سوداء،  وقص ما ورائي،  وخيال علمي  الموضوع الحرب العالمية الثانية  الجوائز قائمة الراديو الوط...

مسك الدفاترصنف فرعي من عملية — محاسبة يمتهنه Miseur (en) — محاسب — bookkeeper (en) فروع account (en) — فاتورة تعديل - تعديل مصدري - تعديل ويكي بيانات هذه المقالة بحاجة لمراجعة خبير مختص في مجالها. يرجى من المختصين في مجالها مراجعتها وتطويرها. (يوليو 2016) جزء من سلسلة مقالات حولالمحاسبة الأنوا...

 

INSL5 التراكيب المتوفرة بنك بيانات البروتينOrtholog search: PDBe RCSB قائمة رموز معرفات بنك بيانات البروتين 2K1V, 2KBC المعرفات الأسماء المستعارة INSL5, PRO182, UNQ156, insulin like 5 معرفات خارجية الوراثة المندلية البشرية عبر الإنترنت 606413 MGI: MGI:1346085 HomoloGene: 48350 GeneCards: 10022 علم الوجود الجيني الوظيفة الجزيئية �...

 

2016年美國總統選舉 ← 2012 2016年11月8日 2020 → 538個選舉人團席位獲勝需270票民意調查投票率55.7%[1][2] ▲ 0.8 %   获提名人 唐納·川普 希拉莉·克林頓 政党 共和黨 民主党 家鄉州 紐約州 紐約州 竞选搭档 迈克·彭斯 蒂姆·凱恩 选举人票 304[3][4][註 1] 227[5] 胜出州/省 30 + 緬-2 20 + DC 民選得票 62,984,828[6] 65,853,514[6]...

Chinese Taipei Hockey AssociationSportField hockeyJurisdictionRepublic of China (Taiwan)AffiliationFIHRegional affiliationAHFPresidentTsai Yi ChuSecretaryChih-Peng Wu The Chinese Taipei Hockey Association is the governing body of field hockey in Republic of China (Taiwan). It is affiliated to IHF International Hockey Federation and AHF Asian Hockey Federation. The headquarters of the federation are in Taipei.[1][2] Tsai Yi Chu is the President of the Chinese Taipei Hockey Asso...

 

Market town in Cheshire, England Human settlement in EnglandNantwichWelsh Row, Nantwich, with the tower of St Mary's Church and shopsNantwichLocation within CheshirePopulation14,045 (2021 Census)[1]OS grid referenceSJ652523Civil parishNantwichUnitary authorityCheshire EastCeremonial countyCheshireRegionNorth WestCountryEnglandSovereign stateUnited KingdomPost townNANTWICHPostcode districtCW5Dialling code01270PoliceCheshireFireCheshireAmbulanceNo...

 

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)&#...

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)&#...

 

Song by Judy Garland and Fred Astaire Cover of the sheet music for We're a Couple of Swells from 1947 We're a Couple of Swells is an American comedy duet song performed by Judy Garland and Fred Astaire in the film Easter Parade (1948). It was written by Irving Berlin. Berlin originally wrote the song Let's Take an Old-Fashioned Walk for the scene, but the film's producer, Arthur Freed, persuaded Berlin to change this for a song that would highlight Garland's comedic talent. Berlin wrote the s...

 

هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (نوفمبر 2018)   لمعانٍ أخرى، طالع مقاطعة جيفرسون (توضيح). مقاطعة جيفرسون     الإحدا�...

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) بيت داود  -  قرية مصرية -  تقسيم إداري البلد  مصر المسؤولون تعديل مصدري - تعديل   هذه المقالة...

 

عيسى بن حسن الأنصاري معلومات شخصية الميلاد 10 يناير 1959 (65 سنة)  الدمام  مواطنة السعودية  مناصب رئيس جامعة الأمير محمد بن فهد   تولى المنصب2004  الحياة العملية المدرسة الأم جامعة الملك سعود (الشهادة:بكالوريوس)جامعة بيتسبرغ (الشهادة:ماجستير) (–1989)جامعة ساوثهامبتون (�...

 

Cuban-American musician Al JourgensenJourgensen performing with Ministry in West Palm Beach, Florida in 2023.Background informationBirth nameAlejandro Ramírez CasasAlso known asThe Alien, Alien Jourgensen, Alain Jourgensen, Hypo Luxa, Dog, Alien Dog Star, Buck Satan, Buck Santa, Uncle Al, Enchanted Al, Al F***-ing JourgensenBorn (1958-10-09) October 9, 1958 (age 65)Havana, CubaGenres Industrial metal[1][2] industrial rock[3] synthpop (early)[4] new&#...

Japanese manga and anime series This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Yu-Gi-Oh! Zexal – news · newspapers · books · scholar · JSTOR (September 2011) (Learn how and when to remove this message) Yu-Gi-Oh! Zexal遊☆戯☆王ZEXAL(Yūgiō Zearu)GenreAdventure, fantasy[1]Created byKazuki ...

 

This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Classificatory kinship – news · newspapers · books · scholar · JSTOR (December 2009) (Learn how and when to remove this message) Part of a series on theAnthropology of kinship Basic concepts Family Lineage Affinity Consanguinity Marriage Incest taboo Endogamy Exogamy Moiety Mono...

 

This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: Feature-oriented programming – news · newspapers · books · scholar · JSTOR (March 2018) (Learn how and when to remove this message) In computer programming, feature-oriented programming (FOP) or feature-oriented software development (FOSD) is a programming paradigm for program generation in software produc...

1987 studio album by Yolanda AdamsJust as I AmStudio album by Yolanda AdamsReleasedSeptember 22, 1987GenreGospelLength33:55Label Nine Sound of Gospel Producer Thomas Whitfield Lamar Brantley Yolanda Adams chronology Just as I Am(1987) Through the Storm(1991) Professional ratingsReview scoresSourceRatingThe Encyclopedia of Popular Music[1] Just as I Am is the debut studio album by American gospel singer Yolanda Adams. It was released by the Sound of Gospel on September 22, 1987...

 

Transition of a liquid to vapor This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Vaporization – news · newspapers · books · scholar · JSTOR (September 2023) (Learn how and when to remove this message) Vaporization (or vaporisation) of an element or compound is a phase transition from the liquid phase to vapor...