Scanning tunneling spectroscopy

Scanning tunneling spectroscopy (STS), an extension of scanning tunneling microscopy (STM), is used to provide information about the density of electrons in a sample as a function of their energy.

In scanning tunneling microscopy, a metal tip is moved over a conducting sample without making physical contact. A bias voltage applied between the sample and tip allows a current to flow between the two. This is as a result of quantum tunneling across a barrier; in this instance, the physical distance between the tip and the sample

The scanning tunneling microscope is used to obtain "topographs" - topographic maps - of surfaces. The tip is rastered across a surface and (in constant current mode), a constant current is maintained between the tip and the sample by adjusting the height of the tip. A plot of the tip height at all measurement positions provides the topograph. These topographic images can obtain atomically resolved information on metallic and semi-conducting surfaces

However, the scanning tunneling microscope does not measure the physical height of surface features. One such example of this limitation is an atom adsorbed onto a surface. The image will result in some perturbation of the height at this point. A detailed analysis of the way in which an image is formed shows that the transmission of the electric current between the tip and the sample depends on two factors: (1) the geometry of the sample and (2) the arrangement of the electrons in the sample. The arrangement of the electrons in the sample is described quantum mechanically by an "electron density". The electron density is a function of both position and energy, and is formally described as the local density of electron states, abbreviated as local density of states (LDOS), which is a function of energy.

Spectroscopy, in its most general sense, refers to a measurement of the number of something as a function of energy. For scanning tunneling spectroscopy the scanning tunneling microscope is used to measure the number of electrons (the LDOS) as a function of the electron energy. The electron energy is set by the electrical potential difference (voltage) between the sample and the tip. The location is set by the position of the tip.

At its simplest, a "scanning tunneling spectrum" is obtained by placing a scanning tunneling microscope tip above a particular place on the sample. With the height of the tip fixed, the electron tunneling current is then measured as a function of electron energy by varying the voltage between the tip and the sample (the tip to sample voltage sets the electron energy). The change of the current with the energy of the electrons is the simplest spectrum that can be obtained, it is often referred to as an I-V curve. As is shown below, it is the slope of the I-V curve at each voltage (often called the dI/dV-curve) which is more fundamental because dI/dV corresponds to the electron density of states at the local position of the tip, the LDOS.

Introduction

Mechanism of how density of states influence V-A spectra of tunnel junction

Scanning tunneling spectroscopy is an experimental technique which uses a scanning tunneling microscope (STM) to probe the local density of electronic states (LDOS) and the band gap of surfaces and materials on surfaces at the atomic scale.[1] Generally, STS involves observation of changes in constant-current topographs with tip-sample bias, local measurement of the tunneling current versus tip-sample bias (I-V) curve, measurement of the tunneling conductance, , or more than one of these. Since the tunneling current in a scanning tunneling microscope only flows in a region with diameter ~5 Å, STS is unusual in comparison with other surface spectroscopy techniques, which average over a larger surface region. The origins of STS are found in some of the earliest STM work of Gerd Binnig and Heinrich Rohrer, in which they observed changes in the appearance of some atoms in the (7 x 7) unit cell of the Si(111) – (7 x 7) surface with tip-sample bias.[2] STS provides the possibility for probing the local electronic structure of metals, semiconductors, and thin insulators on a scale unobtainable with other spectroscopic methods. Additionally, topographic and spectroscopic data can be recorded simultaneously.

Tunneling current

Since STS relies on tunneling phenomena and measurement of the tunneling current or its derivative, understanding the expressions for the tunneling current is very important. Using the modified Bardeen transfer Hamiltonian method, which treats tunneling as a perturbation, the tunneling current () is found to be

(1)

where is the Fermi distribution function, and are the density of states (DOS) in the sample and tip, respectively, and is the tunneling matrix element between the modified wavefunctions of the tip and the sample surface. The tunneling matrix element,

(2)

describes the energy lowering due to the interaction between the two states. Here and are the sample wavefunction modified by the tip potential, and the tip wavefunction modified by sample potential, respectively.[3]

For low temperatures and a constant tunneling matrix element, the tunneling current reduces to

(3)

which is a convolution of the DOS of the tip and the sample.[3] Generally, STS experiments attempt to probe the sample DOS, but equation (3) shows that the tip DOS must be known for the measurement to have meaning. Equation (3) implies that

(4)

under the gross assumption that the tip DOS is constant. For these ideal assumptions, the tunneling conductance is directly proportional to the sample DOS.[3]

For higher bias voltages, the predictions of simple planar tunneling models using the Wentzel-Kramers Brillouin (WKB) approximation are useful. In the WKB theory, the tunneling current is predicted to be

(5)

where and are the density of states (DOS) in the sample and tip, respectively.[2] The energy- and bias-dependent electron tunneling transition probability, T, is given by

(6)

where and are the respective work functions of the sample and tip and is the distance from the sample to the tip.[2]

The tip is often regarded to be a single molecule, essentially neglecting further shapes induced effects. This approximation is the Tersoff-Hamann approximation, which suggests the tip to be a single ball-shaped molecule of certain radius. The tunneling current therefore becomes proportional to the local density of states (LDOS).

Experimental methods

Acquiring standard STM topographs at many different tip-sample biases and comparing to experimental topographic information is perhaps the most straightforward spectroscopic method. The tip-sample bias can also be changed on a line-by-line basis during a single scan. This method creates two interleaved images at different biases. Since only the states between the Fermi levels of the sample and the tip contribute to , this method is a quick way to determine whether there are any interesting bias-dependent features on the surface. However, only limited information about the electronic structure can be extracted by this method, since the constant topographs depend on the tip and sample DOS's and the tunneling transmission probability, which depends on the tip-sample spacing, as described in equation (5).[4]

By using modulation techniques, a constant current topograph and the spatially resolved can be acquired simultaneously. A small, high frequency sinusoidal modulation voltage is superimposed on the D.C. tip-sample bias. The A.C. component of the tunneling current is recorded using a lock-in amplifier, and the component in-phase with the tip-sample bias modulation gives directly. The amplitude of the modulation Vm has to be kept smaller than the spacing of the characteristic spectral features. The broadening caused by the modulation amplitude is 2 eVm and it has to be added to the thermal broadening of 3.2 kBT.[5] In practice, the modulation frequency is chosen slightly higher than the bandwidth of the STM feedback system.[4] This choice prevents the feedback control from compensating for the modulation by changing the tip-sample spacing and minimizes the displacement current 90° out-of-phase with the applied bias modulation. Such effects arise from the capacitance between the tip and the sample, which grows as the modulation frequency increases.[2]

In order to obtain I-V curves simultaneously with a topograph, a sample-and-hold circuit is used in the feedback loop for the z piezo signal. The sample-and-hold circuit freezes the voltage applied to the z piezo, which freezes the tip-sample distance, at the desired location allowing I-V measurements without the feedback system responding.[6][7] The tip-sample bias is swept between the specified values, and the tunneling current is recorded. After the spectra acquisition, the tip-sample bias is returned to the scanning value, and the scan resumes. Using this method, the local electronic structure of semiconductors in the band gap can be probed.[4]

There are two ways to record I-V curves in the manner described above. In constant-spacing scanning tunneling spectroscopy (CS-STS), the tip stops scanning at the desired location to obtain an I-V curve. The tip-sample spacing is adjusted to reach the desired initial current, which may be different from the initial current setpoint, at a specified tip-sample bias. A sample-and-hold amplifier freezes the z piezo feedback signal, which holds the tip-sample spacing constant by preventing the feedback system from changing the bias applied to the z piezo.[7] The tip-sample bias is swept through the specified values, and the tunneling current is recorded. Either numerical differentiation of I(V) or lock-in detection as described above for modulation techniques can be used to find . If lock-in detection is used, then an A.C. modulation voltage is applied to the D.C. tip-sample bias during the bias sweep and the A.C. component of the current in-phase with the modulation voltage is recorded.

In variable-spacing scanning tunneling spectroscopy (VS-STS), the same steps occur as in CS-STS through turning off the feedback. As the tip-sample bias is swept through the specified values, the tip-sample spacing is decreased continuously as the magnitude of the bias is reduced.[6][8] Generally, a minimum tip-sample spacing is specified to prevent the tip from crashing into the sample surface at the 0 V tip-sample bias. Lock-in detection and modulation techniques are used to find the conductivity, because the tunneling current is a function also of the varying tip-sample spacing. Numerical differentiation of I(V) with respect to V would include the contributions from the varying tip-sample spacing.[9] Introduced by Mårtensson and Feenstra to allow conductivity measurements over several orders of magnitude, VS-STS is useful for conductivity measurements on systems with large band gaps. Such measurements are necessary to properly define the band edges and examine the gap for states.[8]

Current-imaging-tunneling spectroscopy (CITS) is an STS technique where an I-V curve is recorded at each pixel in the STM topograph.[6] Either variable-spacing or constant-spacing spectroscopy may be used to record the I-V curves. The conductance, , can be obtained by numerical differentiation of I with respect to V or acquired using lock-in detection as described above.[10] Because the topographic image and the tunneling spectroscopy data are obtained nearly simultaneously, there is nearly perfect registry of topographic and spectroscopic data. As a practical concern, the number of pixels in the scan or the scan area may be reduced to prevent piezo creep or thermal drift from moving the feature of study or the scan area during the duration of the scan. While most CITS data obtained on the times scale of several minutes, some experiments may require stability over longer periods of time. One approach to improving the experimental design is by applying feature-oriented scanning (FOS) methodology.[11]

Data interpretation

From the obtained I-V curves, the band gap of the sample at the location of the I-V measurement can be determined. By plotting the magnitude of I on a log scale versus the tip-sample bias, the band gap can clearly be determined. Although determination of the band gap is possible from a linear plot of the I-V curve, the log scale increases the sensitivity.[9] Alternatively, a plot of the conductance, , versus the tip-sample bias, V, allows one to locate the band edges that determine the band gap.

The structure in the , as a function of the tip-sample bias, is associated with the density of states of the surface when the tip-sample bias is less than the work functions of the tip and the sample. Usually, the WKB approximation for the tunneling current is used to interpret these measurements at low tip-sample bias relative to the tip and sample work functions. The derivative of equation (5), I in the WKB approximation, is

(7)

where is the sample density of states, is the tip density of states, and T is the tunneling transmission probability.[2] Although the tunneling transmission probability T is generally unknown, at a fixed location T increases smoothly and monotonically with the tip-sample bias in the WKB approximation. Hence, structure in the is usually assigned to features in the density of states in the first term of equation (7).[4]

Interpretation of as a function of position is more complicated. Spatial variations in T show up in measurements of as an inverted topographic background. When obtained in constant current mode, images of the spatial variation of contain a convolution of topographic and electronic structure. An additional complication arises since in the low-bias limit. Thus, diverges as V approaches 0, preventing investigation of the local electronic structure near the Fermi level.[4]

Since both the tunneling current, equation (5), and the conductance, equation (7), depend on the tip DOS and the tunneling transition probability, T, quantitative information about the sample DOS is very difficult to obtain. Additionally, the voltage dependence of T, which is usually unknown, can vary with position due to local fluctuations in the electronic structure of the surface.[2] For some cases, normalizing by dividing by can minimize the effect of the voltage dependence of T and the influence of the tip-sample spacing. Using the WKB approximation, equations (5) and (7), we obtain:[12]

(8)

Feenstra et al. argued that the dependencies of and on tip-sample spacing and tip-sample bias tend to cancel, since they appear as ratios.[13] This cancellation reduces the normalized conductance to the following form:

(9)

where normalizes T to the DOS and describes the influence of the electric field in the tunneling gap on the decay length. Under the assumption that and vary slowly with tip-sample bias, the features in reflect the sample DOS, .[2]

Limitations

While STS can provide spectroscopic information with amazing spatial resolution, there are some limitations. The STM and STS lack chemical sensitivity. Since the tip-sample bias range in tunneling experiments is limited to , where is the apparent barrier height, STM and STS only sample valence electron states. Element-specific information is generally impossible to extract from STM and STS experiments, since the chemical bond formation greatly perturbs the valence states.[4]

At finite temperatures, the thermal broadening of the electron energy distribution due to the Fermi-distribution limits spectroscopic resolution. At , , and the sample and tip energy distribution spread are both . Hence, the total energy deviation is .[3] Assuming the dispersion relation for simple metals, it follows from the uncertainty relation that

(10)

where is the Fermi energy, is the bottom of the valence band, is the Fermi wave vector, and is the lateral resolution. Since spatial resolution depends on the tip-sample spacing, smaller tip-sample spacings and higher topographic resolution blur the features in tunneling spectra.[3]

Despite these limitations, STS and STM provide the possibility for probing the local electronic structure of metals, semiconductors, and thin insulators on a scale unobtainable with other spectroscopic methods. Additionally, topographic and spectroscopic data can be recorded simultaneously.

References

  1. ^ K. Oura, V. G. Lifshits, A. A. Saranin, A. V. Zotov, and M. Katayama, Surface Science: An Introduction, Berlin: Springer-Verlag, 2003.
  2. ^ a b c d e f g R. J. Hamers and D. F. Padowitz, “Methods of Tunneling Spectroscopy with the STM,” from Scanning Probe Microscopy and Spectroscopy: Theory, Techniques, and Applications, 2nd ed., Ed. by D. A. Bonnell, New York: Wiley-VCH, Inc., 2001.
  3. ^ a b c d e C. Julian Chen, Introduction to Scanning Tunneling Microscopy, Oxford University Press New York (1993).
  4. ^ a b c d e f R. Wiesendanger, Scanning Probe Microscopy and Spectroscopy: Methods and Applications, Cambridge, UK: Cambridge University Press, 1994.
  5. ^ Klein, J.; Léger, A.; Belin, M.; Défourneau, D.; Sangster, M. J. L. (1973-03-15). "Inelastic-Electron-Tunneling Spectroscopy of Metal-Insulator-Metal Junctions". Physical Review B. 7 (6): 2336–2348. Bibcode:1973PhRvB...7.2336K. doi:10.1103/PhysRevB.7.2336.
  6. ^ a b c Hamers, R. J.; Tromp, R. M.; Demuth, J. E. (5 May 1986). "Surface Electronic Structure of Si (111)-(7×7) Resolved in Real Space". Physical Review Letters. 56 (18). American Physical Society (APS): 1972–1975. Bibcode:1986PhRvL..56.1972H. doi:10.1103/physrevlett.56.1972. ISSN 0031-9007. PMID 10032824.
  7. ^ a b R. C. Barrett and S. Park, “Design Considerations for an STM System,” from Scanning Tunneling Microscopy, Ed. by W. J. Kaiser and J. A. Stroscio, San Diego: Academic Press, Inc., 1993.
  8. ^ a b Mårtensson, P.; Feenstra, R. M. (15 April 1989). "Geometric and electronic structure of antimony on the GaAs(110) surface studied by scanning tunneling microscopy". Physical Review B. 39 (11). American Physical Society (APS): 7744–7753. Bibcode:1989PhRvB..39.7744M. doi:10.1103/physrevb.39.7744. ISSN 0163-1829. PMID 9947455.
  9. ^ a b R. M. Feenstra and J. A. Stroscio, “Methods of Tunneling Spectroscopy,” from Scanning Tunneling Microscopy, Ed. by W. J. Kaiser and J. A. Stroscio, San Diego: Academic Press, Inc., 1993.
  10. ^ Hamers, R J (1989). "Atomic-Resolution Surface Spectroscopy with the Scanning Tunneling Microscope". Annual Review of Physical Chemistry. 40 (1). Annual Reviews: 531–559. Bibcode:1989ARPC...40..531H. doi:10.1146/annurev.pc.40.100189.002531. ISSN 0066-426X.
  11. ^ R. V. Lapshin (2004). "Feature-oriented scanning methodology for probe microscopy and nanotechnology" (PDF). Nanotechnology. 15 (9). UK: IOP: 1135–1151. Bibcode:2004Nanot..15.1135L. doi:10.1088/0957-4484/15/9/006. ISSN 0957-4484. S2CID 250913438. (Russian translation is available).
  12. ^ R. J. Hamers, “STM on Semiconductors,” from Scanning Tunneling Microscopy I, Springer Series in Surface Sciences 20, Ed. by H. -J. Güntherodt and R. Wiesendanger, Berlin: Springer-Verlag, 1992.
  13. ^ Feenstra, R.M.; Stroscio, Joseph A.; Fein, A.P. (1987). "Tunneling spectroscopy of the Si(111)2 × 1 surface". Surface Science. 181 (1–2). Elsevier BV: 295–306. Bibcode:1987SurSc.181..295F. doi:10.1016/0039-6028(87)90170-1. ISSN 0039-6028.

Further reading

Read other articles:

Часть серии статей о Холокосте Идеология и политика Расовая гигиена · Расовый антисемитизм · Нацистская расовая политика · Нюрнбергские расовые законы Шоа Лагеря смерти Белжец · Дахау · Майданек · Малый Тростенец · Маутхаузен ·&...

 

 

Ini adalah nama Batak Toba, marganya adalah Sigiro. Dr. Atnike Nova Sigiro. M,Sc. M,Sw. (lahir 24 April 1976) adalah seorang akademisi berkebangsaan Indonesia yang saat ini menjabat sebagai Ketua Komisi Nasional Hak Asasi Manusia ke-12 periode 2022-2027.[1] Atnike Nova SigiroPotret resmi Atnike Nova Sigiro tahun 2022 Ketua Komnas HAM Ke-12Masa jabatan2022 – sekarangPresidenJoko Widodo PendahuluAhmad Taufan DamanikPenggantiPetahana Informasi pribadiLahirAtnike Nova Sigir...

 

 

Mosque in Kazan, Tatarstan, Russia This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help to improve this article by introducing more precise citations. (January 2022) (Learn how and when to remove this template message) Märcani MosqueMärcani Mosque, 2016ReligionAffiliationIslamDistrictTatarstanStatusActiveLocationLocationKazan, RussiaGeographic coordinates55°46′47″N 49°07′03″E&#...

Treaty over Belgium and Luxembourg Scrap of paper redirects here. For the literal meaning, see Paper recycling. For the silent film, see A Scrap of Paper. Treaty of LondonBelgian borders claimed before The Treaty of the XXIV articles.TypeMultilateral TreatySigned19 April 1839 (1839-04-19)LocationLondon, United KingdomOriginalsignatories  Austria  Belgium  France  German Confederation  Netherlands  Russia  United Kingdom Ratifiers Austria Belgi...

 

 

Questa voce o sezione sull'argomento televisione non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Questa voce sull'argomento televisione è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. La Struttura Grandi Eventi dell...

 

 

MargaretSutradaraKenneth LonerganProduserSydney PollackGary GilbertScott RudinDitulis olehKenneth LonerganPemeranAnna PaquinJ. Smith-CameronJean RenoJeannie BerlinAllison JanneyMatthew BroderickKieran CulkinMark RuffaloMatt DamonPenata musikNico MuhlySinematograferRyszard LenczewskiPenyuntingAnne McCabeMichael FayPerusahaanproduksiCamelot PicturesGilbert Films Mirage EnterprisesScott Rudin ProductionsDistributorSearchlight PicturesTanggal rilis 30 September 2011 (2011-09-30) Durasi...

Kent Persson Swedish politician Kent Persson (born 1951) is a Swedish politician of the Left Party. He was member of the Riksdag from 2006 to 2014. External links Riksdagen: Kent Persson (v) vteMembers of the Parliament of Sweden for the Left Party during 2006–2010 Ulla Andersson Marianne Berg Torbjörn Björlund Josefin Brink Rossana Dinamarca Marie Engström Egon Frid Siv Holma Wiwi-Anne Johansson Jacob Johnson Amineh Kakabaveh Kalle Larsson Hans Linde Elina Linna Lars Ohly Eva Olofsson L...

 

 

「アプリケーション」はこの項目へ転送されています。英語の意味については「wikt:応用」、「wikt:application」をご覧ください。 この記事には複数の問題があります。改善やノートページでの議論にご協力ください。 出典がまったく示されていないか不十分です。内容に関する文献や情報源が必要です。(2018年4月) 古い情報を更新する必要があります。(2021年3月)出...

 

 

ヨハネス12世 第130代 ローマ教皇 教皇就任 955年12月16日教皇離任 964年5月14日先代 アガペトゥス2世次代 レオ8世個人情報出生 937年スポレート公国(中部イタリア)スポレート死去 964年5月14日 教皇領、ローマ原国籍 スポレート公国親 父アルベリーコ2世(スポレート公)、母アルダその他のヨハネステンプレートを表示 ヨハネス12世(Ioannes XII、937年 - 964年5月14日)は、ロ...

Artikel ini bukan mengenai Daftar Wali Kota Semarang. Bupati SemarangLambang Kabupaten SemarangPetahanaNgesti Nugrahasejak 26 Februari 2021KediamanRumah Dinas Bupati Semarang, UngaranMasa jabatan5 tahunDibentuk1547Pejabat pertamaKi Pandan Arang IISitus webwww.semarangkab.go.id Berikut Daftar Bupati Kabupaten Semarang, Jawa Tengah, dari masa ke masa (1547–sekarang) No Potret Bupati Awal Jabatan Akhir Jabatan Keterangan 1 Ki Pandan Arang II (Pangeran Mangkubumi I) 1547 1553 2 Raden Ketib...

 

 

ValchiriaValchiria affronta Crossbones e Sin UniversoUniverso Marvel Nome orig.Valkyrie AutoriRoy Thomas John Buscema EditoreMarvel Comics 1ª app.dicembre 1970 1ª app. inThe Avengers (vol. 1[1]) n. 83 1ª app. it.dicembre 1974 1ª app. it. inIl Mitico Thor n. 97 Interpretata daTessa Thompson Voce italianaValentina Favazza Caratteristiche immaginarieSessoFemmina Poteriinvecchiamento rallentato Valchiria (Valkyrie) è un personaggio dei fumetti pubblicati dalla Ma...

 

 

Buchenberg. Buchenberg adalah kota yang terletak di distrik Oberallgäu di Bayern, Jerman. Kota Buchenberg memiliki luas sebesar 58.11 km² . Buchenberg pada tahun 2006, memiliki penduduk sebanyak 4.277 jiwa. lbsKota dan kotamadya di OberallgäuAltusried | Bad Hindelang | Balderschwang | Betzigau | Blaichach | Bolsterlang | Buchenberg | Burgberg im Allgäu | Dietmannsried | Durach | Fischen | Haldenwang | Immenstadt | Laube...

Chemical compound GR-113808Identifiers IUPAC name 1-(2-methylsulfonylaminoethyl-4-piperidinyl)methyl-1-methyl-1H-indole-3-carboxylate CAS Number144625-51-4PubChem CID119376IUPHAR/BPS247ChemSpider106623UNIIZT350OYT3ICompTox Dashboard (EPA)DTXSID40162772 Chemical and physical dataFormulaC19H27N3O4SMolar mass393.50 g·mol−13D model (JSmol)Interactive image SMILES c13ccccc3c(cn1C)C(=O)OCC(CC2)CCN2CCNS(=O)(C)=O InChI InChI=1S/C19H27N3O4S/c1-21-13-17(16-5-3-4-6-18(16)21)19(23)26-14-15-7-10-2...

 

 

هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (يناير 2018) الدوري البحريني الممتاز 1966–67معلومات عامةالرياضة كرة القدم البطولة الدوري الب...

 

 

Zilla diodia Klasifikasi ilmiah Kerajaan: Animalia Filum: Arthropoda Kelas: Arachnida Ordo: Araneae Famili: Araneidae Spesies: Zilla diodia Nama binomial Zilla diodiaWalckenaer, 1802 Zilla diodia adalah spesies laba-laba yang tergolong famili Araneidae. Spesies ini juga merupakan bagian dari ordo Araneae. Nama ilmiah dari spesies ini pertama kali diterbitkan pada tahun 1802 oleh Walckenaer. Laba-laba ini biasanya banyak ditemui di Eropa hingga Azerbaijan. Referensi Platnick, Norman I. (2010)...

Ne doit pas être confondu avec Académie royale des sciences de l'ingénieur de Suède. Cet article est une ébauche concernant la Suède et l’éducation. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Académie royale des sciences de SuèdeBâtiment principal de l'Académie royale des sciences de Suède. För efterkommande(pour la postérité)HistoireFondation 2 juin 1739CadreType Académie des sciences, Ac...

 

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. Tugu Palagan di Teluk Lerong, Samarinda merupakan penanda peringatan terjadinya pertempuran di Samarinda tanggal 15 Januari 1947. Tugu ini diresmikan oleh Wali kota Samarinda tanggal 10 November 1991, terletak di Kelurahan Teluk Lerong Ilir, di sebera...

 

 

Daniel BurnhamLahir4 September 1846Meninggal1 Juni 1912(1912-06-01) (umur 65)Pekerjaanarsitek dan perencana perkotaan Penghargaan Fellow of the American Institute of Architects (en) Daniel Hudson Burnham (4 September 1846-1 Juni 1912) adalah arsitek dan perencana perkotaan berkebangsaan Amerika Serikat. Ia pernah menjadi direktur proyek ketika diadakan Pameran Dunia Columbus (World's Columbian Exposition) tahun 1893 di Chicago. Di antara bangunan terkenal yang hasil desainnya adalah Ged...

Radio station at the University of Guelph in Guelph, Ontario This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: CFRU-FM – news · newspapers · books · scholar · JSTOR (October 2023) (Learn how and when to remove this message) CFRU-FMGuelph, OntarioFrequency93.3 MHz (FM)BrandingCFRU 93.3 FMProgrammingFormatCampus...

 

 

Actors StudioSiège de l'Actors Studio à New York.HistoireFondation 5 octobre 1947CadreType École d'art dramatiqueMouvement La MéthodeSiège New YorkPays  États-UnisCoordonnées 40° 45′ 36″ N, 73° 59′ 34″ OOrganisationFondateurs Robert Lewis (en), Cheryl Crawford, Elia KazanSite web (en) www.theactorsstudio.orgmodifier - modifier le code - modifier Wikidata L’Actors Studio est une organisation associative (membership organization) amér...