Unit cell

In geometry, biology, mineralogy and solid state physics, a unit cell is a repeating unit formed by the vectors spanning the points of a lattice.[1] Despite its suggestive name, the unit cell (unlike a unit vector, for example) does not necessarily have unit size, or even a particular size at all. Rather, the primitive cell is the closest analogy to a unit vector, since it has a determined size for a given lattice and is the basic building block from which larger cells are constructed.

The concept is used particularly in describing crystal structure in two and three dimensions, though it makes sense in all dimensions. A lattice can be characterized by the geometry of its unit cell, which is a section of the tiling (a parallelogram or parallelepiped) that generates the whole tiling using only translations.

There are two special cases of the unit cell: the primitive cell and the conventional cell. The primitive cell is a unit cell corresponding to a single lattice point, it is the smallest possible unit cell.[2] In some cases, the full symmetry of a crystal structure is not obvious from the primitive cell, in which cases a conventional cell may be used. A conventional cell (which may or may not be primitive) is a unit cell with the full symmetry of the lattice and may include more than one lattice point. The conventional unit cells are parallelotopes in n dimensions.

Primitive cell

A primitive cell is a unit cell that contains exactly one lattice point. For unit cells generally, lattice points that are shared by n cells are counted as 1/n of the lattice points contained in each of those cells; so for example a primitive unit cell in three dimensions which has lattice points only at its eight vertices is considered to contain 1/8 of each of them.[3] An alternative conceptualization is to consistently pick only one of the n lattice points to belong to the given unit cell (so the other n-1 lattice points belong to adjacent unit cells).

The primitive translation vectors a1, a2, a3 span a lattice cell of smallest volume for a particular three-dimensional lattice, and are used to define a crystal translation vector

where u1, u2, u3 are integers, translation by which leaves the lattice invariant.[note 1] That is, for a point in the lattice r, the arrangement of points appears the same from r′ = r + T as from r.[4]

Since the primitive cell is defined by the primitive axes (vectors) a1, a2, a3, the volume Vp of the primitive cell is given by the parallelepiped from the above axes as

Usually, primitive cells in two and three dimensions are chosen to take the shape parallelograms and parallelepipeds, with an atom at each corner of the cell. This choice of primitive cell is not unique, but volume of primitive cells will always be given by the expression above.[5]

Wigner–Seitz cell

In addition to the parallelepiped primitive cells, for every Bravais lattice there is another kind of primitive cell called the Wigner–Seitz cell. In the Wigner–Seitz cell, the lattice point is at the center of the cell, and for most Bravais lattices, the shape is not a parallelogram or parallelepiped. This is a type of Voronoi cell. The Wigner–Seitz cell of the reciprocal lattice in momentum space is called the Brillouin zone.

Conventional cell

For each particular lattice, a conventional cell has been chosen on a case-by-case basis by crystallographers based on convenience of calculation.[6] These conventional cells may have additional lattice points located in the middle of the faces or body of the unit cell. The number of lattice points, as well as the volume of the conventional cell is an integer multiple (1, 2, 3, or 4) of that of the primitive cell.[7]

Two dimensions

The parallelogram is the general primitive cell for the plane.

For any 2-dimensional lattice, the unit cells are parallelograms, which in special cases may have orthogonal angles, equal lengths, or both. Four of the five two-dimensional Bravais lattices are represented using conventional primitive cells, as shown below.

Conventional primitive cell
Shape name Parallelogram Rectangle Square Rhombus
Bravais lattice Primitive Oblique Primitive Rectangular Primitive Square Primitive Hexagonal

The centered rectangular lattice also has a primitive cell in the shape of a rhombus, but in order to allow easy discrimination on the basis of symmetry, it is represented by a conventional cell which contains two lattice points.

Primitive cell
Shape name Rhombus
Conventional cell
Bravais lattice Centered Rectangular

Three dimensions

A parallelepiped is a general primitive cell for 3-dimensional space.

For any 3-dimensional lattice, the conventional unit cells are parallelepipeds, which in special cases may have orthogonal angles, or equal lengths, or both. Seven of the fourteen three-dimensional Bravais lattices are represented using conventional primitive cells, as shown below.

Conventional primitive cell Hexagonal
Shape name Parallelepiped Oblique rectangular prism Rectangular cuboid Square cuboid Trigonal trapezohedron Cube Right rhombic prism
Bravais lattice Primitive Triclinic Primitive Monoclinic Primitive Orthorhombic Primitive Tetragonal Primitive Rhombohedral Primitive Cubic Primitive Hexagonal

The other seven Bravais lattices (known as the centered lattices) also have primitive cells in the shape of a parallelepiped, but in order to allow easy discrimination on the basis of symmetry, they are represented by conventional cells which contain more than one lattice point.

Primitive cell
Shape name Oblique rhombic prism Right rhombic prism
Conventional cell
Bravais lattice Base-centered Monoclinic Base-centered Orthorhombic Body-centered Orthorhombic Face-centered Orthorhombic Body-centered Tetragonal Body-centered Cubic Face-centered Cubic

See also

Notes

  1. ^ In n dimensions the crystal translation vector would be
    That is, for a point in the lattice r, the arrangement of points appears the same from r′ = r + T as from r.

References

  1. ^ Ashcroft, Neil W. (1976). "Chapter 4". Solid State Physics. W. B. Saunders Company. p. 72. ISBN 0-03-083993-9.
  2. ^ Simon, Steven (2013). The Oxford Solid State Physics (1 ed.). Oxford University Press. p. 114. ISBN 978-0-19-968076-4.
  3. ^ "DoITPoMS – TLP Library Crystallography – Unit Cell". Online Materials Science Learning Resources: DoITPoMS. University of Cambridge. Retrieved 21 February 2015.
  4. ^ Kittel, Charles (11 November 2004). Introduction to Solid State Physics (8 ed.). Wiley. p. 4. ISBN 978-0-471-41526-8.
  5. ^ Mehl, Michael J.; Hicks, David; Toher, Cormac; Levy, Ohad; Hanson, Robert M.; Hart, Gus; Curtarolo, Stefano (2017). "The AFLOW Library of Crystallographic Prototypes: Part 1". Computational Materials Science. 136. Elsevier BV: S1 – S828. arXiv:1806.07864. doi:10.1016/j.commatsci.2017.01.017. ISSN 0927-0256. S2CID 119490841.
  6. ^ Aroyo, M. I., ed. (2016-12-31). International Tables for Crystallography. Chester, England: International Union of Crystallography. p. 25. doi:10.1107/97809553602060000114. ISBN 978-0-470-97423-0.
  7. ^ Ashcroft, Neil W. (1976). Solid State Physics. W. B. Saunders Company. p. 73. ISBN 0-03-083993-9.

Read other articles:

Lac Wahapo Vue du lac depuis sa rive sud. Administration Pays Nouvelle-Zélande Subdivision District de Westland Géographie Coordonnées 43° 14′ 56″ S, 170° 15′ 58″ E Superficie 2,17 km2 Altitude 48 m Géolocalisation sur la carte : Nouvelle-Zélande Lac Wahapo modifier  Le lac Wahapo (en anglais : Lake Wahapo et en maori de Nouvelle-Zélande : Wahapako) est un lac néo-zélandais situé dans le district de Westland, sur la Côte o...

 

 

3rd Algerian Infantry Division3e Division d'Infanterie AlgérienneThe insignia of the 3e DIA represents the winged statuette of the Victory of Cirta Victoire de Cirta with three crescentsActive1 May 1943 - 15 April 1946Country FranceAllegiance French ArmyTypeInfantry DivisionSize16,840 personnel (1943) 40% Europeans 60% Maghrebis Motto(s)It crescendoEngagementsItalian CampaignSouthern FranceVosges MountainsGambsheim BridgeheadBienwaldBadenCommandersNotablecommandersJoseph de Goislard de Monsa...

 

 

Шалфей обыкновенный Научная классификация Домен:ЭукариотыЦарство:РастенияКлада:Цветковые растенияКлада:ЭвдикотыКлада:СуперастеридыКлада:АстеридыКлада:ЛамиидыПорядок:ЯсноткоцветныеСемейство:ЯснотковыеРод:ШалфейВид:Шалфей обыкновенный Международное научное наз...

Final Carolingian-dynasty King of East Francia (reigned 900 to 911) For the king of Sicily with the same nickname, see Louis of Sicily. For the Chicago-based musical duo, see Louis the Child (DJs). Louis the ChildLouis the Child as he appears on the Imperial Sword.King of East FranciaReign899 – 20/24 September 911Coronation4 February 900, ForchheimPredecessorArnulf of CarinthiaSuccessorConrad IKing of LotharingiaReign900 – 20/24 September 911PredecessorZwentiboldSuccessorCharles I...

 

 

Humanist sans-serif font For other uses, see Verdana (disambiguation). VerdanaCategorySans-serifClassificationModern HumanistDesigner(s)Matthew CarterFoundryMicrosoft, Font Bureau (Verdana Pro)Date released1996Design based onTahomaVariationsMeiryoMS Reference Sans SerifNinaVerdana ProVerdana RefMetrically compatible withBitstream Vera SansDejaVu Sans Verdana is a humanist sans-serif typeface designed by Matthew Carter for Microsoft Corporation, with hand-hinting done by Thomas Rickner, then a...

 

 

Ability of an organism to sense water movements Arthropods like these northern prawn, and some mammals, detect water movement with sensory hairs such as whiskers, bristles or antennae In animal physiology, hydrodynamic reception refers to the ability of some animals to sense water movements generated by biotic (conspecifics, predators, or prey) or abiotic sources. This form of mechanoreception is useful for orientation, hunting, predator avoidance, and schooling.[1][2] Frequen...

Mountain in the state of Wyoming Fremont PeakFremont Peak at center from near Island LakeHighest pointElevation13,751 ft (4,191 m)[1]Prominence1,184 ft (361 m)[1]Coordinates43°07′29″N 109°37′05″W / 43.12472°N 109.61806°W / 43.12472; -109.61806[2]GeographyFremont PeakFremont / Sublette counties, Wyoming, U.S. Parent rangeWind River RangeTopo mapUSGS Fremont Peak SouthClimbingFirst ascent1842 Fremont and others...

 

 

梅拉蒂·达伊瓦·奥克塔维亚尼Melati Daeva Oktavianti基本資料代表國家/地區 印度尼西亞出生 (1994-10-28) 1994年10月28日(29歲)[1] 印度尼西亞万丹省西冷[1]身高1.68米(5英尺6英寸)[1]握拍右手[1]主項:女子雙打、混合雙打職業戰績48勝–27負(女雙)109勝–56負(混雙)最高世界排名第4位(混雙-普拉文·喬丹)(2020年3月17日[2])現時世界排名第...

 

 

«un esemplare di ciò che fu l’homo sapiens prima che la sapienza fosse peccato» (Eugenio Montale, A Pio Rajna, da Quaderno di quattro anni, 1977) Pio Rajna Pio Rajna (Sondrio, 8 luglio 1847 – Firenze, 25 novembre 1930) è stato un filologo e critico letterario italiano. Indice 1 Biografia 2 Omaggi 3 Onorificenze 4 Opere principali 4.1 Studi 4.2 Curatele 5 Note 6 Bibliografia 7 Altri progetti 8 Collegamenti esterni Biografia Pio Rajna Nacque da Eugenio Paolo Rajna e Costanza Simonetta....

明朝关西八卫 赤斤蒙古卫,明朝关西八卫之一,简称赤斤卫,又作赤金卫。 明朝 明朝永乐二年(1404年)元朝丞相苦术之子塔力尼投降明朝,以其所部在赤斤站设置赤斤蒙古千户所,在今甘肃省玉门市西北赤金堡。永乐八年(1410年)升为赤斤卫,正德年间被吐鲁番汗国所破,当地人内徙肃州的南山,赤斤城空。 清朝 清圣祖康熙五十七年(1718年),恢复赤金卫,清世宗雍正...

 

 

Triple woodhenge in Ohio, US Moorehead CircleLocation within Ohio todayLocationLebanon, Ohio, Warren County, Ohio,  USARegionWarren County, OhioCoordinates39°24′27.22″N 84°5′16.8″W / 39.4075611°N 84.088000°W / 39.4075611; -84.088000HistoryCulturesOhio Hopewell cultureSite notesExcavation dates2009ArchaeologistsRobert RiordanArchitectureArchitectural stylestimber circle, Moorehead Circle was a triple woodhenge constructed about two millen...

 

 

Ej att förväxla med den finländske skogsforskaren och rektorn Erik Lönnroth. Erik Lönnroth Erik Lönnroth utövade både genom sin rent vetenskapliga gärning och genom sin verksamhet som universitets- och forskningspolitiker ett stort inflytande på svensk kulturpolitik under mer än ett halvt sekel. Foto från 1962.Född1 augusti 1910[1]Vasa församling[2]Död10 mars 2002[3] (91 år)Johannebergs församling[3]BegravdÖstra kyrkogården, Göteborg[3]kartorMedborgare ...

У этого термина существуют и другие значения, см. Поречье. ДеревняПоречье Казанская церковь в Поречье 55°37′12″ с. ш. 36°30′32″ в. д.HGЯO Страна  Россия Субъект Федерации Московская область Муниципальный район Рузский Сельское поселение Колюбакинское История и г�...

 

 

Person who offers loans at extremely high interest rates For other uses, see Loan shark (disambiguation). This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Loan shark – news · newspape...

 

 

Spanish conquistador (1485–1547) For the Bolivian Olympic weightlifter, see Hernán Cortez (weightlifter). In this Spanish name, the first or paternal surname is Cortés de Monroy and the second or maternal family name is Pizarro Altamirano. Hernán Cortés18th-century portrait of Cortés based on the one sent by the conqueror to Paolo Giovio, which has served as a model for many of his representations since the 16th century1st Governor of New SpainIn office13 August 1521 �...

Political term in Imperial Japan Mainland JapanNative name: 内地Passports for passengers between Mainland Japan and Okinawa during 1952–1972.GeographyLocationJapanDemographicsEthnic groupsJapanese peopleAinu peopleRyukyuan people Mainland Japan (内地, naichi, lit. inner lands) is a term used to distinguish Japan's core land area from its outlying territories. It is most commonly used to distinguish the country's four largest islands (Hokkaidō, Honshū, Kyūshū and Shikoku) from smalle...

 

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Wilhelmshaven Imperial Shipyard – news · newspapers · books · scholar · JSTOR (November 2007) (Learn how and when to remove this message) Kaiserliche Werft WilhelmshavenIndustryShipbuildingFounded1871Defunct1918FateClosed after World War ISuccessorKriegsmarinew...

 

 

Fictional female collie dog This article is about the fictional collie dog. For other uses, see Lassie (disambiguation). Fictional character LassieTommy Rettig with Lassie Junior, son of Pal, the first Lassie, in the Lassie television seriesFirst appearanceLassie Come-HomeCreated byEric KnightPortrayed byPalIn-universe informationSpeciesDog (Rough Collie)GenderFemale Lassie is a fictional female Rough Collie dog and is featured in a 1938 short story by Eric Knight that was later expanded to a...

FC 08 HomburgCalcio Segni distintiviUniformi di gara Casa Trasferta Colori sociali Verde, bianco Dati societariCittàHomburg Nazione Germania ConfederazioneUEFA Federazione DFB Fondazione1908 Presidente Herbert Eder StadioWaldstadion(22,500 posti) Sito webwww.fc08homburg.de/ PalmarèsSi invita a seguire il modello di voce L'Fußball-Club 08 Homburg/Saar e.V. è una società calcistica tedesca di Homburg, città del Saarland. I colori sociali sono il verde e il bianco. Nella stagione 2023...

 

 

Group of lymphoproliferative disorders Medical conditionCastleman diseasesOther namesGiant lymph node hyperplasia, lymphoid hamartoma, angiofollicular lymph node hyperplasiaMicrograph of Castleman disease showing hyaline vascular features including atrophic germinal center, expanded mantle zone, and a radially penetrating sclerotic blood vessel (lollipop sign). H&E stain.SpecialtyImmunology, angiology Symptomsfever, unintended weight loss, fatigue, night sweats, nausea, enlarged live...