Energy range in a solid where no electron states exist
This article is about solid state physics. For voltage control circuitry in electronics, see Bandgap voltage reference.
This article is about the electronic bandgap found in semiconductors. For the photonic band gap, see Photonic crystal.
In solid-state physics and solid-state chemistry, a band gap, also called a bandgap or energy gap, is an energy range in a solid where no electronic states exist. In graphs of the electronic band structure of solids, the band gap refers to the energy difference (often expressed in electronvolts) between the top of the valence band and the bottom of the conduction band in insulators and semiconductors. It is the energy required to promote an electron from the valence band to the conduction band. The resulting conduction-band electron (and the electron hole in the valence band) are free to move within the crystal lattice and serve as charge carriers to conduct electric current. It is closely related to the HOMO/LUMO gap in chemistry. If the valence band is completely full and the conduction band is completely empty, then electrons cannot move within the solid because there are no available states. If the electrons are not free to move within the crystal lattice, then there is no generated current due to no net charge carrier mobility. However, if some electrons transfer from the valence band (mostly full) to the conduction band (mostly empty), then current can flow (see carrier generation and recombination). Therefore, the band gap is a major factor determining the electrical conductivity of a solid. Substances having large band gaps (also called "wide" band gaps) are generally insulators, those with small band gaps (also called "narrow" band gaps) are semiconductors, and conductors either have very small band gaps or none, because the valence and conduction bands overlap to form a continuous band.
It is possible to produce laser induced insulator-metal transitions which have already been experimentally observed in some condensed matter systems, like thin films of C60,[1] doped manganites,[2] or in vanadium sesquioxide V2O3.[3] These are special cases of the more general metal-to-nonmetal transitions phenomena which were intensively studied in the last decades.[4] A one-dimensional analytic model of laser induced distortion of band structure was presented for a spatially periodic (cosine) potential. This problem is periodic both in space and time and can be solved analytically using the Kramers-Henneberger co-moving frame. The solutions can be given with the help of the Mathieu functions.[5]
In semiconductor physics
Every solid has its own characteristic energy-band structure. This variation in band structure is responsible for the wide range of electrical characteristics observed in various materials.
Depending on the dimension, the band structure and spectroscopy can vary. The different types of dimensions are as listed: one dimension, two dimensions, and three dimensions.[6]
In semiconductors and insulators, electrons are confined to a number of bands of energy, and forbidden from other regions because there are no allowable electronic states for them to occupy. The term "band gap" refers to the energy difference between the top of the valence band and the bottom of the conduction band. Electrons are able to jump from one band to another. However, in order for a valence band electron to be promoted to the conduction band, it requires a specific minimum amount of energy for the transition. This required energy is an intrinsic characteristic of the solid material. Electrons can gain enough energy to jump to the conduction band by absorbing either a phonon (heat) or a photon (light).
A semiconductor is a material with an intermediate-sized, non-zero band gap that behaves as an insulator at T=0K, but allows thermal excitation of electrons into its conduction band at temperatures that are below its melting point. In contrast, a material with a large band gap is an insulator. In conductors, the valence and conduction bands may overlap, so there is no longer a bandgap with forbidden regions of electronic states.
The conductivity of intrinsic semiconductors is strongly dependent on the band gap. The only available charge carriers for conduction are the electrons that have enough thermal energy to be excited across the band gap and the electron holes that are left off when such an excitation occurs.
Band-gap engineering is the process of controlling or altering the band gap of a material by controlling the composition of certain semiconductor alloys, such as GaAlAs, InGaAs, and InAlAs. It is also possible to construct layered materials with alternating compositions by techniques like molecular-beam epitaxy. These methods are exploited in the design of heterojunction bipolar transistors (HBTs), laser diodes and solar cells.
The distinction between semiconductors and insulators is a matter of convention. One approach is to think of semiconductors as a type of insulator with a narrow band gap. Insulators with a larger band gap, usually greater than 4 eV,[7] are not considered semiconductors and generally do not exhibit semiconductive behaviour under practical conditions. Electron mobility also plays a role in determining a material's informal classification.
The band-gap energy of semiconductors tends to decrease with increasing temperature. When temperature increases, the amplitude of atomic vibrations increase, leading to larger interatomic spacing. The interaction between the lattice phonons and the free electrons and holes will also affect the band gap to a smaller extent.[8] The relationship between band gap energy and temperature can be described by Varshni's empirical expression (named after Y. P. Varshni),
Furthermore, lattice vibrations increase with temperature, which increases the effect of electron scattering. Additionally, the number of charge carriers within a semiconductor will increase, as more carriers have the energy required to cross the band-gap threshold and so conductivity of semiconductors also increases with increasing temperature.[10] The external pressure also influences the electronic structure of semiconductors and, therefore, their optical band gaps.[11]
In a regular semiconductor crystal, the band gap is fixed owing to continuous energy states. In a quantum dot crystal, the band gap is size dependent and can be altered to produce a range of energies between the valence band and conduction band.[12] It is also known as quantum confinement effect.
It was mentioned earlier that the dimensions have different band structure and spectroscopy. For non-metallic solids, which are one dimensional, have optical properties that are dependent on the electronic transitions between valence and conduction bands. In addition, the spectroscopic transition probability is between the initial and final orbital and it depends on the integral.[6] φi is the initial orbital, φf is the final orbital, ʃ φf*ûεφi is the integral, ε is the electric vector, and u is the dipole moment.[6]
Two-dimensional structures of solids behave because of the overlap of atomic orbitals.[6] The simplest two-dimensional crystal contains identical atoms arranged on a square lattice.[6] Energy splitting occurs at the Brillouin zone edge for one-dimensional situations because of a weak periodic potential, which produces a gap between bands. The behavior of the one-dimensional situations does not occur for two-dimensional cases because there are extra freedoms of motion. Furthermore, a bandgap can be produced with strong periodic potential for two-dimensional and three-dimensional cases.[6]
Based on their band structure, materials are characterised with a direct band gap or indirect band gap. In the free-electron model, k is the momentum of a free electron and assumes unique values within the Brillouin zone that outlines the periodicity of the crystal lattice. If the momentum of the lowest energy state in the conduction band and the highest energy state of the valence band of a material have the same value, then the material has a direct bandgap. If they are not the same, then the material has an indirect band gap and the electronic transition must undergo momentum transfer to satisfy conservation. Such indirect "forbidden" transitions still occur, however at very low probabilities and weaker energy.[11][13][14][15] For materials with a direct band gap, valence electrons can be directly excited into the conduction band by a photon whose energy is larger than the bandgap. In contrast, for materials with an indirect band gap, a photon and phonon must both be involved in a transition from the valence band top to the conduction band bottom, involving a momentum change. Therefore, direct bandgap materials tend to have stronger light emission and absorption properties and tend to be better suited for photovoltaics (PVs), light-emitting diodes (LEDs), and laser diodes;[16] however, indirect bandgap materials are frequently used in PVs and LEDs when the materials have other favorable properties.
LEDs and laser diodes usually emit photons with energy close to and slightly larger than the band gap of the semiconductor material from which they are made. Therefore, as the band gap energy increases, the LED or laser color changes from infrared to red, through the rainbow to violet, then to UV.[17]
The optical band gap (see below) determines what portion of the solar spectrum a photovoltaic cell absorbs.[18] Strictly, a semiconductor will not absorb photons of energy less than the band gap; whereas most of the photons with energies exceeding the band gap will generate heat. Neither of them contribute to the efficiency of a solar cell. One way to circumvent this problem is based on the so-called photon management concept, in which case the solar spectrum is modified to match the absorption profile of the solar cell.[19]
List of band gaps
Below are band gap values for some selected materials.[20] For a comprehensive list of band gaps in semiconductors, see List of semiconductor materials.
In materials with a large exciton binding energy, it is possible for a photon to have just barely enough energy to create an exciton (bound electron–hole pair), but not enough energy to separate the electron and hole (which are electrically attracted to each other). In this situation, there is a distinction between "optical band gap" and "electronic band gap" (or "transport gap"). The optical bandgap is the threshold for photons to be absorbed, while the transport gap is the threshold for creating an electron–hole pair that is not bound together. The optical bandgap is at lower energy than the transport gap.
In almost all inorganic semiconductors, such as silicon, gallium arsenide, etc., there is very little interaction between electrons and holes (very small exciton binding energy), and therefore the optical and electronic bandgap are essentially identical, and the distinction between them is ignored. However, in some systems, including organic semiconductors and single-walled carbon nanotubes, the distinction may be significant.
Band gaps for other quasi-particles
In photonics, band gaps or stop bands are ranges of photon frequencies where, if tunneling effects are neglected, no photons can be transmitted through a material. A material exhibiting this behaviour is known as a photonic crystal. The concept of hyperuniformity[28] has broadened the range of photonic band gap materials, beyond photonic crystals. By applying the technique in supersymmetric quantum mechanics, a new class of optical disordered materials has been suggested,[29] which support band gaps perfectly equivalent to those of crystals or quasicrystals.
^Sze, S.M. (1981). "Chapters 12–14". Physics of semiconductor devices. John Wiley & Sons. ISBN0471056618.
^Dean, K J (August 1984). "Waves and Fields in Optoelectronics: Prentice-Hall Series in Solid State Physical Electronics". Physics Bulletin. 35 (8): 339. doi:10.1088/0031-9112/35/8/023.
^ abGoetzberger, A.; Knobloch, J.; Voss, B. (1998). Crystalline silicon solar cells. John Wiley & Sons. ISBN0-471-97144-8.
Sekolah Pendeta HKBPDidirikan18831947 (berdiri kembali)2006 (dibuka kembali)DirekturPdt. Robert F.H. Silitonga, M.Th[1]Jumlah mahasiswa15 (Angkatan 2020) Sekolah Pendeta HKBP adalah sebuah perguruan tinggi swasta milik HKBP di Pematangsiantar, Sumatera Utara. Sekolah Pendeta HKBP merupakan salah satu lembaga Pendidikan Teologi HKBP yang mendidik para calon-calon Hamba Tuhan atau Pendeta HKBP. Mereka adalah guru Huria atau guru Jemaat (Parhangir/voorhanger) yang sudah 10 hingga 15 tahu...
وسام النجم القطبي الملكي السويديمعلومات عامةالبداية 1748 الاسم الأصل Nordstjärneorden (بالسويدية) سُمِّي باسم الجدي البلد السويد الرتبة الأعلى التالية نيشان السيف الرتبة الأدنى التالية Royal Order of Vasa (en) موقع التأسيس ستوكهولم لديه جزء أو أجزاء وسام النجم القطبي - قائد الصليب الأكبرOrder...
لمعانٍ أخرى، طالع شار (توضيح). شار علم شعار الاسم الرسمي (بالفرنسية: Cher) الإحداثيات 47°04′52″N 2°26′40″E / 47.081111111111°N 2.4444444444444°E / 47.081111111111; 2.4444444444444 [1] تاريخ التأسيس 4 مارس 1790 تقسيم إداري البلد فرنسا[2][3] التقسيم الأعلى ...
Cincinnati beralih ke halaman ini. Untuk kegunaan lain, lihat Cincinnati (disambiguasi). Cincinnati, OhioKotaKota CincinnatiDowntown Cincinnati from Devou Park in Covington, Kentucky BenderaLambangJulukan: The Queen City, Cincy, The Fountain CityMotto: Juncta Juvant (Lat. Strength in Unity)Location in Hamilton County and the state of Ohio.NegaraAmerika SerikatNegara BagianOhioWilayahHamiltonTerbentuk1788Bermukim1802 sebagai Desa / 1819 Sebagai KotaPemerintahan • JenisWal...
This article needs to be updated. Relevant discussion may be found on the talk page. Please help update this article to reflect recent events or newly available information. (October 2022) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Patten University – news · newspapers · books · scholar · JSTOR (October...
2017 studio album by Hey VioletFrom the OutsideStudio album by Hey VioletReleasedJune 16, 2017 (2017-06-16)Recorded2015–2017StudioEnemy Dojo, CalabasasSarm Music Village, LondonGenrePop rockEDM[1]pop[2]Length41:27LabelHi or HeyCapitolProducerAfterhrsJulian BunettaCook ClassicsCory EnemyDallasKJason EviganTeddy GeigerJussifierDavid PramikPicard BrothersHey Violet chronology Brand New Moves(2016) From the Outside(2017) Singles from From the Outside Guys ...
DFB Pokal 2002-2003 Competizione Coppa di Germania Sport Calcio Edizione 60ª Luogo Germania Risultati Vincitore Bayern Monaco(11º titolo) Secondo Kaiserslautern Cronologia della competizione 2001-2002 2003-2004 Manuale La DFB-Pokal 2002-2003 è stata la 60ª edizione del torneo. La competizione è iniziata il 28 agosto 2002 e terminata il 31 maggio 2003. Il trofeo è stato vinto dal Bayern Monaco, che in finale ha sconfitto il Kaiserslautern per 3-1. Indice 1 Primo turno 2 Secondo tu...
AntangKelurahanNegara IndonesiaProvinsiSulawesi SelatanKotaMakassarKecamatanManggalaKodepos90234Kode Kemendagri73.71.12.1004 Kode BPS7371101005 Luas3,59 km²Jumlah penduduk10.911 jiwa (2019)Kepadatan... jiwa/km²Jumlah RT40Jumlah RW6 Bugis Water Park, wahana air yang populer di Kota Makassar yang terletak di wilayah Kelurahan Antang ANTANG adalah nama sebuah kelurahan di Kecamatan Manggala, Kota Makassar, Provinsi Sulawesi Selatan, Indonesia. Kelurahan ini memiliki luas sekitar ± 3,59...
Swedish politician (born 1975) Martina JohanssonJohansson in 2019Member of the RiksdagIncumbentAssumed office 24 September 2018ConstituencySödermanland County Personal detailsBorn1975 (age 48–49)Political partyCentre Party Martina Johansson (born 1975)[1] is a Swedish politician. Since September 2018,[update] she serves as Member of the Riksdag representing the constituency of Södermanland County. She was also elected as Member of the Riksdag in September...
Appearance of the Buddha One of the first representations of the Buddha, 1st–2nd century CE, Greco-Buddhist art, Gandhara Part of a series onBuddhism Glossary Index Outline History Timeline The Buddha Pre-sectarian Buddhism Councils Silk Road transmission of Buddhism Decline in the Indian subcontinent Later Buddhists Buddhist modernism DharmaConcepts Four Noble Truths Noble Eightfold Path Dharma wheel Five Aggregates Impermanence Suffering Not-self Dependent Origination Middle Way Emptiness...
Спорт в Чувашии представлен достижениями спортсменов мирового класса. В Чувашии имеются множество спортивных школ. Спортсмены мирового класса Перечисляются мастера спорта СССР международного класса; только спортсмены олимпийских (а также иных значимых) видов спорта, �...
Questa voce sull'argomento società di pallacanestro tedesche è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. U.S.C. HeidelbergPallacanestro Segni distintiviUniformi di gara Casa Trasferta Colori sociali Bianco, nero e arancione Dati societariCittàHeidelberg Nazione Germania ConfederazioneFIBA Europe FederazioneDBB CampionatoBasketball-Bundesliga Fondazione1899 DenominazioneU.S.C. Heidelberg(1899-presente) Allenatore Ingo Freyer ImpiantoSNP Dome...
Political party in South Africa formed in 2000 Democratic Alliance AbbreviationDAFederal LeaderJohn SteenhuisenFederal ChairpersonIvan MeyerDeputy Federal ChairpersonsJP SmithSolly MalatsiAnton BredellFederal Council ChairpersonHelen Zille[1]Deputy Federal Council ChairpersonsAshor SarupenAnnelie LotrietThomas WaltersFounded24 June 2000; 24 years ago (2000-06-24)Preceded byDemocratic PartyNew National PartyFederal AllianceIdeologyLiberalism (South African)Federa...
Luigi CadornaLuigi Cadorna in abiti civili. Capo di stato maggiore del Regio EsercitoDurata mandato10 luglio 1914 –8 novembre 1917 MonarcaVittorio Emanuele III PredecessoreAlberto Pollio SuccessoreArmando Diaz Senatore del Regno d'ItaliaDurata mandato16 ottobre 1913 –21 dicembre 1928 LegislaturaXXIV, XXV, XXVI, XXVII Tipo nominaCategoria: 14 Sito istituzionale Dati generaliPartito politicoIndipendente (militare) Titolo di studioAccade...
Dutch footballer and manager Andries Jonker Jonker in 2010Personal informationFull name Andries Jonker[1]Date of birth (1962-09-22) 22 September 1962 (age 61)Place of birth Amsterdam, NetherlandsHeight 1.78 m (5 ft 10 in)Team informationCurrent team Netherlands (women)Youth career VolendamSenior career*Years Team Apps (Gls) De Volewijckers 0000–1980 Volendam 1980– De Volewijckers De Meer 0000–1988 ZFC Managerial career1988–1990 DRC Amsterdam II1999–2000 V...
Accademia slovena delle scienze e delle arti(SL) Slovenska akademija znanosti in umetnosti L'entrata dell'edificio Fondazione1938 Sede centrale Lubiana Sito web Modifica dati su Wikidata · Manuale L'Accademia slovena delle scienze e delle arti (in sloveno Slovenska akademija znanosti in umetnosti, abbreviato in SAZU) è l'accademia nazionale della Slovenia che comprende la scienza e le arti e riunisce i migliori ricercatori ed artisti sloveni[1]. L'istituzione si trova a Lubiana...