Function in number theory given by Srinivasa Ramanujan
In number theory , Ramanujan's sum , usually denoted cq (n ), is a function of two positive integer variables q and n defined by the formula
c
q
(
n
)
=
∑ ∑ -->
1
≤ ≤ -->
a
≤ ≤ -->
q
(
a
,
q
)
=
1
e
2
π π -->
i
a
q
n
,
{\displaystyle c_{q}(n)=\sum _{1\leq a\leq q \atop (a,q)=1}e^{2\pi i{\tfrac {a}{q}}n},}
where (a , q ) = 1 means that a only takes on values coprime to q .
Srinivasa Ramanujan mentioned the sums in a 1918 paper.[ 1] In addition to the expansions discussed in this article, Ramanujan's sums are used in the proof of Vinogradov's theorem that every sufficiently large odd number is the sum of three primes .[ 2]
Notation
For integers a and b ,
a
∣ ∣ -->
b
{\displaystyle a\mid b}
is read "a divides b " and means that there is an integer c such that
b
a
=
c
.
{\displaystyle {\frac {b}{a}}=c.}
Similarly,
a
∤ ∤ -->
b
{\displaystyle a\nmid b}
is read "a does not divide b ". The summation symbol
∑ ∑ -->
d
∣ ∣ -->
m
f
(
d
)
{\displaystyle \sum _{d\,\mid \,m}f(d)}
means that d goes through all the positive divisors of m , e.g.
∑ ∑ -->
d
∣ ∣ -->
12
f
(
d
)
=
f
(
1
)
+
f
(
2
)
+
f
(
3
)
+
f
(
4
)
+
f
(
6
)
+
f
(
12
)
.
{\displaystyle \sum _{d\,\mid \,12}f(d)=f(1)+f(2)+f(3)+f(4)+f(6)+f(12).}
(
a
,
b
)
{\displaystyle (a,\,b)}
is the greatest common divisor ,
ϕ ϕ -->
(
n
)
{\displaystyle \phi (n)}
is Euler's totient function ,
μ μ -->
(
n
)
{\displaystyle \mu (n)}
is the Möbius function , and
ζ ζ -->
(
s
)
{\displaystyle \zeta (s)}
is the Riemann zeta function .
Trigonometry
These formulas come from the definition, Euler's formula
e
i
x
=
cos
-->
x
+
i
sin
-->
x
,
{\displaystyle e^{ix}=\cos x+i\sin x,}
and elementary trigonometric identities.
c
1
(
n
)
=
1
c
2
(
n
)
=
cos
-->
n
π π -->
c
3
(
n
)
=
2
cos
-->
2
3
n
π π -->
c
4
(
n
)
=
2
cos
-->
1
2
n
π π -->
c
5
(
n
)
=
2
cos
-->
2
5
n
π π -->
+
2
cos
-->
4
5
n
π π -->
c
6
(
n
)
=
2
cos
-->
1
3
n
π π -->
c
7
(
n
)
=
2
cos
-->
2
7
n
π π -->
+
2
cos
-->
4
7
n
π π -->
+
2
cos
-->
6
7
n
π π -->
c
8
(
n
)
=
2
cos
-->
1
4
n
π π -->
+
2
cos
-->
3
4
n
π π -->
c
9
(
n
)
=
2
cos
-->
2
9
n
π π -->
+
2
cos
-->
4
9
n
π π -->
+
2
cos
-->
8
9
n
π π -->
c
10
(
n
)
=
2
cos
-->
1
5
n
π π -->
+
2
cos
-->
3
5
n
π π -->
{\displaystyle {\begin{aligned}c_{1}(n)&=1\\c_{2}(n)&=\cos n\pi \\c_{3}(n)&=2\cos {\tfrac {2}{3}}n\pi \\c_{4}(n)&=2\cos {\tfrac {1}{2}}n\pi \\c_{5}(n)&=2\cos {\tfrac {2}{5}}n\pi +2\cos {\tfrac {4}{5}}n\pi \\c_{6}(n)&=2\cos {\tfrac {1}{3}}n\pi \\c_{7}(n)&=2\cos {\tfrac {2}{7}}n\pi +2\cos {\tfrac {4}{7}}n\pi +2\cos {\tfrac {6}{7}}n\pi \\c_{8}(n)&=2\cos {\tfrac {1}{4}}n\pi +2\cos {\tfrac {3}{4}}n\pi \\c_{9}(n)&=2\cos {\tfrac {2}{9}}n\pi +2\cos {\tfrac {4}{9}}n\pi +2\cos {\tfrac {8}{9}}n\pi \\c_{10}(n)&=2\cos {\tfrac {1}{5}}n\pi +2\cos {\tfrac {3}{5}}n\pi \\\end{aligned}}}
and so on (OEIS : A000012 , OEIS : A033999 , OEIS : A099837 , OEIS : A176742 ,.., OEIS : A100051 ,...). cq (n ) is always an integer.
Kluyver
Let
ζ ζ -->
q
=
e
2
π π -->
i
q
.
{\displaystyle \zeta _{q}=e^{\frac {2\pi i}{q}}.}
Then ζq is a root of the equation xq − 1 = 0 . Each of its powers,
ζ ζ -->
q
,
ζ ζ -->
q
2
,
… … -->
,
ζ ζ -->
q
q
− − -->
1
,
ζ ζ -->
q
q
=
ζ ζ -->
q
0
=
1
{\displaystyle \zeta _{q},\zeta _{q}^{2},\ldots ,\zeta _{q}^{q-1},\zeta _{q}^{q}=\zeta _{q}^{0}=1}
is also a root. Therefore, since there are q of them, they are all of the roots. The numbers
ζ ζ -->
q
n
{\displaystyle \zeta _{q}^{n}}
where 1 ≤ n ≤ q are called the q -th roots of unity . ζq is called a primitive q -th root of unity because the smallest value of n that makes
ζ ζ -->
q
n
=
1
{\displaystyle \zeta _{q}^{n}=1}
is q . The other primitive q -th roots of unity are the numbers
ζ ζ -->
q
a
{\displaystyle \zeta _{q}^{a}}
where (a , q ) = 1. Therefore, there are φ(q ) primitive q -th roots of unity.
Thus, the Ramanujan sum cq (n ) is the sum of the n -th powers of the primitive q -th roots of unity.
It is a fact[ 3] that the powers of ζq are precisely the primitive roots for all the divisors of q .
Example. Let q = 12. Then
ζ ζ -->
12
,
ζ ζ -->
12
5
,
ζ ζ -->
12
7
,
{\displaystyle \zeta _{12},\zeta _{12}^{5},\zeta _{12}^{7},}
and
ζ ζ -->
12
11
{\displaystyle \zeta _{12}^{11}}
are the primitive twelfth roots of unity,
ζ ζ -->
12
2
{\displaystyle \zeta _{12}^{2}}
and
ζ ζ -->
12
10
{\displaystyle \zeta _{12}^{10}}
are the primitive sixth roots of unity,
ζ ζ -->
12
3
=
i
{\displaystyle \zeta _{12}^{3}=i}
and
ζ ζ -->
12
9
=
− − -->
i
{\displaystyle \zeta _{12}^{9}=-i}
are the primitive fourth roots of unity,
ζ ζ -->
12
4
{\displaystyle \zeta _{12}^{4}}
and
ζ ζ -->
12
8
{\displaystyle \zeta _{12}^{8}}
are the primitive third roots of unity,
ζ ζ -->
12
6
=
− − -->
1
{\displaystyle \zeta _{12}^{6}=-1}
is the primitive second root of unity, and
ζ ζ -->
12
12
=
1
{\displaystyle \zeta _{12}^{12}=1}
is the primitive first root of unity.
Therefore, if
η η -->
q
(
n
)
=
∑ ∑ -->
k
=
1
q
ζ ζ -->
q
k
n
{\displaystyle \eta _{q}(n)=\sum _{k=1}^{q}\zeta _{q}^{kn}}
is the sum of the n -th powers of all the roots, primitive and imprimitive,
η η -->
q
(
n
)
=
∑ ∑ -->
d
∣ ∣ -->
q
c
d
(
n
)
,
{\displaystyle \eta _{q}(n)=\sum _{d\mid q}c_{d}(n),}
and by Möbius inversion ,
c
q
(
n
)
=
∑ ∑ -->
d
∣ ∣ -->
q
μ μ -->
(
q
d
)
η η -->
d
(
n
)
.
{\displaystyle c_{q}(n)=\sum _{d\mid q}\mu \left({\frac {q}{d}}\right)\eta _{d}(n).}
It follows from the identity x q − 1 = (x − 1)(x q −1 + x q −2 + ... + x + 1) that
η η -->
q
(
n
)
=
{
0
q
∤ ∤ -->
n
q
q
∣ ∣ -->
n
{\displaystyle \eta _{q}(n)={\begin{cases}0&q\nmid n\\q&q\mid n\\\end{cases}}}
and this leads to the formula
c
q
(
n
)
=
∑ ∑ -->
d
∣ ∣ -->
(
q
,
n
)
μ μ -->
(
q
d
)
d
,
{\displaystyle c_{q}(n)=\sum _{d\mid (q,n)}\mu \left({\frac {q}{d}}\right)d,}
published by Kluyver in 1906.[ 4]
This shows that c q (n ) is always an integer. Compare it with the formula
ϕ ϕ -->
(
q
)
=
∑ ∑ -->
d
∣ ∣ -->
q
μ μ -->
(
q
d
)
d
.
{\displaystyle \phi (q)=\sum _{d\mid q}\mu \left({\frac {q}{d}}\right)d.}
von Sterneck
It is easily shown from the definition that c q (n ) is multiplicative when considered as a function of q for a fixed value of n :[ 5] i.e.
If
(
q
,
r
)
=
1
then
c
q
(
n
)
c
r
(
n
)
=
c
q
r
(
n
)
.
{\displaystyle {\mbox{If }}\;(q,r)=1\;{\mbox{ then }}\;c_{q}(n)c_{r}(n)=c_{qr}(n).}
From the definition (or Kluyver's formula) it is straightforward to prove that, if p is a prime number,
c
p
(
n
)
=
{
− − -->
1
if
p
∤ ∤ -->
n
ϕ ϕ -->
(
p
)
if
p
∣ ∣ -->
n
,
{\displaystyle c_{p}(n)={\begin{cases}-1&{\mbox{ if }}p\nmid n\\\phi (p)&{\mbox{ if }}p\mid n\\\end{cases}},}
and if p k is a prime power where k > 1,
c
p
k
(
n
)
=
{
0
if
p
k
− − -->
1
∤ ∤ -->
n
− − -->
p
k
− − -->
1
if
p
k
− − -->
1
∣ ∣ -->
n
and
p
k
∤ ∤ -->
n
ϕ ϕ -->
(
p
k
)
if
p
k
∣ ∣ -->
n
.
{\displaystyle c_{p^{k}}(n)={\begin{cases}0&{\mbox{ if }}p^{k-1}\nmid n\\-p^{k-1}&{\mbox{ if }}p^{k-1}\mid n{\mbox{ and }}p^{k}\nmid n\\\phi (p^{k})&{\mbox{ if }}p^{k}\mid n\\\end{cases}}.}
This result and the multiplicative property can be used to prove
c
q
(
n
)
=
μ μ -->
(
q
(
q
,
n
)
)
ϕ ϕ -->
(
q
)
ϕ ϕ -->
(
q
(
q
,
n
)
)
.
{\displaystyle c_{q}(n)=\mu \left({\frac {q}{(q,n)}}\right){\frac {\phi (q)}{\phi \left({\frac {q}{(q,n)}}\right)}}.}
This is called von Sterneck's arithmetic function.[ 6] The equivalence of it and Ramanujan's sum is due to Hölder.[ 7] [ 8]
Other properties of c q (n )
For all positive integers q ,
c
1
(
q
)
=
1
c
q
(
1
)
=
μ μ -->
(
q
)
c
q
(
q
)
=
ϕ ϕ -->
(
q
)
c
q
(
m
)
=
c
q
(
n
)
for
m
≡ ≡ -->
n
(
mod
q
)
{\displaystyle {\begin{aligned}c_{1}(q)&=1\\c_{q}(1)&=\mu (q)\\c_{q}(q)&=\phi (q)\\c_{q}(m)&=c_{q}(n)&&{\text{for }}m\equiv n{\pmod {q}}\\\end{aligned}}}
For a fixed value of q the absolute value of the sequence
{
c
q
(
1
)
,
c
q
(
2
)
,
… … -->
}
{\displaystyle \{c_{q}(1),c_{q}(2),\ldots \}}
is bounded by φ(q ), and for a fixed value of n the absolute value of the sequence
{
c
1
(
n
)
,
c
2
(
n
)
,
… … -->
}
{\displaystyle \{c_{1}(n),c_{2}(n),\ldots \}}
is bounded by n .
If q > 1
∑ ∑ -->
n
=
a
a
+
q
− − -->
1
c
q
(
n
)
=
0.
{\displaystyle \sum _{n=a}^{a+q-1}c_{q}(n)=0.}
Let m 1 , m 2 > 0, m = lcm(m 1 , m 2 ). Then[ 9] Ramanujan's sums satisfy an orthogonality property :
1
m
∑ ∑ -->
k
=
1
m
c
m
1
(
k
)
c
m
2
(
k
)
=
{
ϕ ϕ -->
(
m
)
m
1
=
m
2
=
m
,
0
otherwise
{\displaystyle {\frac {1}{m}}\sum _{k=1}^{m}c_{m_{1}}(k)c_{m_{2}}(k)={\begin{cases}\phi (m)&m_{1}=m_{2}=m,\\0&{\text{otherwise}}\end{cases}}}
Let n , k > 0. Then[ 10]
∑ ∑ -->
gcd
(
d
,
k
)
=
1
d
∣ ∣ -->
n
d
μ μ -->
(
n
d
)
ϕ ϕ -->
(
d
)
=
μ μ -->
(
n
)
c
n
(
k
)
ϕ ϕ -->
(
n
)
,
{\displaystyle \sum _{\stackrel {d\mid n}{\gcd(d,k)=1}}d\;{\frac {\mu ({\tfrac {n}{d}})}{\phi (d)}}={\frac {\mu (n)c_{n}(k)}{\phi (n)}},}
known as the Brauer - Rademacher identity.
If n > 0 and a is any integer, we also have[ 11]
∑ ∑ -->
gcd
(
k
,
n
)
=
1
1
≤ ≤ -->
k
≤ ≤ -->
n
c
n
(
k
− − -->
a
)
=
μ μ -->
(
n
)
c
n
(
a
)
,
{\displaystyle \sum _{\stackrel {1\leq k\leq n}{\gcd(k,n)=1}}c_{n}(k-a)=\mu (n)c_{n}(a),}
due to Cohen.
Table
Ramanujan sum c s (n )
n
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
s
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
−1
1
−1
1
−1
1
−1
1
−1
1
−1
1
−1
1
−1
1
−1
1
−1
1
−1
1
−1
1
−1
1
−1
1
−1
1
3
−1
−1
2
−1
−1
2
−1
−1
2
−1
−1
2
−1
−1
2
−1
−1
2
−1
−1
2
−1
−1
2
−1
−1
2
−1
−1
2
4
0
−2
0
2
0
−2
0
2
0
−2
0
2
0
−2
0
2
0
−2
0
2
0
−2
0
2
0
−2
0
2
0
−2
5
−1
−1
−1
−1
4
−1
−1
−1
−1
4
−1
−1
−1
−1
4
−1
−1
−1
−1
4
−1
−1
−1
−1
4
−1
−1
−1
−1
4
6
1
−1
−2
−1
1
2
1
−1
−2
−1
1
2
1
−1
−2
−1
1
2
1
−1
−2
−1
1
2
1
−1
−2
−1
1
2
7
−1
−1
−1
−1
−1
−1
6
−1
−1
−1
−1
−1
−1
6
−1
−1
−1
−1
−1
−1
6
−1
−1
−1
−1
−1
−1
6
−1
−1
8
0
0
0
−4
0
0
0
4
0
0
0
−4
0
0
0
4
0
0
0
−4
0
0
0
4
0
0
0
−4
0
0
9
0
0
−3
0
0
−3
0
0
6
0
0
−3
0
0
−3
0
0
6
0
0
−3
0
0
−3
0
0
6
0
0
−3
10
1
−1
1
−1
−4
−1
1
−1
1
4
1
−1
1
−1
−4
−1
1
−1
1
4
1
−1
1
−1
−4
−1
1
−1
1
4
11
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
10
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
10
−1
−1
−1
−1
−1
−1
−1
−1
12
0
2
0
−2
0
−4
0
−2
0
2
0
4
0
2
0
−2
0
−4
0
−2
0
2
0
4
0
2
0
−2
0
−4
13
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
12
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
12
−1
−1
−1
−1
14
1
−1
1
−1
1
−1
−6
−1
1
−1
1
−1
1
6
1
−1
1
−1
1
−1
−6
−1
1
−1
1
−1
1
6
1
−1
15
1
1
−2
1
−4
−2
1
1
−2
−4
1
−2
1
1
8
1
1
−2
1
−4
−2
1
1
−2
−4
1
−2
1
1
8
16
0
0
0
0
0
0
0
−8
0
0
0
0
0
0
0
8
0
0
0
0
0
0
0
−8
0
0
0
0
0
0
17
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
16
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
18
0
0
3
0
0
−3
0
0
−6
0
0
−3
0
0
3
0
0
6
0
0
3
0
0
−3
0
0
−6
0
0
−3
19
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
18
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
20
0
2
0
−2
0
2
0
−2
0
−8
0
−2
0
2
0
−2
0
2
0
8
0
2
0
−2
0
2
0
−2
0
−8
21
1
1
−2
1
1
−2
−6
1
−2
1
1
−2
1
−6
−2
1
1
−2
1
1
12
1
1
−2
1
1
−2
−6
1
−2
22
1
−1
1
−1
1
−1
1
−1
1
−1
−10
−1
1
−1
1
−1
1
−1
1
−1
1
10
1
−1
1
−1
1
−1
1
−1
23
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
22
−1
−1
−1
−1
−1
−1
−1
24
0
0
0
4
0
0
0
−4
0
0
0
−8
0
0
0
−4
0
0
0
4
0
0
0
8
0
0
0
4
0
0
25
0
0
0
0
−5
0
0
0
0
−5
0
0
0
0
−5
0
0
0
0
−5
0
0
0
0
20
0
0
0
0
−5
26
1
−1
1
−1
1
−1
1
−1
1
−1
1
−1
−12
−1
1
−1
1
−1
1
−1
1
−1
1
−1
1
12
1
−1
1
−1
27
0
0
0
0
0
0
0
0
−9
0
0
0
0
0
0
0
0
−9
0
0
0
0
0
0
0
0
18
0
0
0
28
0
2
0
−2
0
2
0
−2
0
2
0
−2
0
−12
0
−2
0
2
0
−2
0
2
0
−2
0
2
0
12
0
2
29
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
−1
28
−1
30
−1
1
2
1
4
−2
−1
1
2
−4
−1
−2
−1
1
−8
1
−1
−2
−1
−4
2
1
−1
−2
4
1
2
1
−1
8
Ramanujan expansions
If f (n ) is an arithmetic function (i.e. a complex-valued function of the integers or natural numbers), then a convergent infinite series of the form:
f
(
n
)
=
∑ ∑ -->
q
=
1
∞ ∞ -->
a
q
c
q
(
n
)
{\displaystyle f(n)=\sum _{q=1}^{\infty }a_{q}c_{q}(n)}
or of the form:
f
(
q
)
=
∑ ∑ -->
n
=
1
∞ ∞ -->
a
n
c
q
(
n
)
{\displaystyle f(q)=\sum _{n=1}^{\infty }a_{n}c_{q}(n)}
where the ak ∈ C , is called a Ramanujan expansion [ 12] of f (n ) .
Ramanujan found expansions of some of the well-known functions of number theory. All of these results are proved in an "elementary" manner (i.e. only using formal manipulations of series and the simplest results about convergence).[ 13] [ 14] [ 15]
The expansion of the zero function depends on a result from the analytic theory of prime numbers, namely that the series
∑ ∑ -->
n
=
1
∞ ∞ -->
μ μ -->
(
n
)
n
{\displaystyle \sum _{n=1}^{\infty }{\frac {\mu (n)}{n}}}
converges to 0, and the results for r (n ) and r ′(n ) depend on theorems in an earlier paper.[ 16]
All the formulas in this section are from Ramanujan's 1918 paper.
Generating functions
The generating functions of the Ramanujan sums are Dirichlet series :
ζ ζ -->
(
s
)
∑ ∑ -->
δ δ -->
∣ ∣ -->
q
μ μ -->
(
q
δ δ -->
)
δ δ -->
1
− − -->
s
=
∑ ∑ -->
n
=
1
∞ ∞ -->
c
q
(
n
)
n
s
{\displaystyle \zeta (s)\sum _{\delta \,\mid \,q}\mu \left({\frac {q}{\delta }}\right)\delta ^{1-s}=\sum _{n=1}^{\infty }{\frac {c_{q}(n)}{n^{s}}}}
is a generating function for the sequence cq (1) , cq (2) , ... where q is kept constant, and
σ σ -->
r
− − -->
1
(
n
)
n
r
− − -->
1
ζ ζ -->
(
r
)
=
∑ ∑ -->
q
=
1
∞ ∞ -->
c
q
(
n
)
q
r
{\displaystyle {\frac {\sigma _{r-1}(n)}{n^{r-1}\zeta (r)}}=\sum _{q=1}^{\infty }{\frac {c_{q}(n)}{q^{r}}}}
is a generating function for the sequence c 1 (n ) , c 2 (n ) , ... where n is kept constant.
There is also the double Dirichlet series
ζ ζ -->
(
s
)
ζ ζ -->
(
r
+
s
− − -->
1
)
ζ ζ -->
(
r
)
=
∑ ∑ -->
q
=
1
∞ ∞ -->
∑ ∑ -->
n
=
1
∞ ∞ -->
c
q
(
n
)
q
r
n
s
.
{\displaystyle {\frac {\zeta (s)\zeta (r+s-1)}{\zeta (r)}}=\sum _{q=1}^{\infty }\sum _{n=1}^{\infty }{\frac {c_{q}(n)}{q^{r}n^{s}}}.}
The polynomial with Ramanujan sum's as coefficients can be expressed with cyclotomic polynomial [ 17]
∑ ∑ -->
n
=
1
q
c
q
(
n
)
x
n
− − -->
1
=
(
x
q
− − -->
1
)
Φ Φ -->
q
′
(
x
)
Φ Φ -->
q
(
x
)
=
Φ Φ -->
q
′
(
x
)
∏ ∏ -->
d
∣ ∣ -->
q
d
≠ ≠ -->
q
Φ Φ -->
d
(
x
)
{\displaystyle \sum _{n=1}^{q}c_{q}(n)x^{n-1}=(x^{q}-1){\frac {\Phi _{q}'(x)}{\Phi _{q}(x)}}=\Phi _{q}'(x)\prod _{\begin{array}{c}d\mid q\\[-4pt]d\neq q\end{array}}\Phi _{d}(x)}
σk (n )
σk (n ) is the divisor function (i.e. the sum of the k -th powers of the divisors of n , including 1 and n ). σ0 (n ) , the number of divisors of n , is usually written d (n ) and σ1 (n ) , the sum of the divisors of n , is usually written σ(n ) .
If s > 0 ,
σ σ -->
s
(
n
)
=
n
s
ζ ζ -->
(
s
+
1
)
(
c
1
(
n
)
1
s
+
1
+
c
2
(
n
)
2
s
+
1
+
c
3
(
n
)
3
s
+
1
+
⋯ ⋯ -->
)
σ σ -->
− − -->
s
(
n
)
=
ζ ζ -->
(
s
+
1
)
(
c
1
(
n
)
1
s
+
1
+
c
2
(
n
)
2
s
+
1
+
c
3
(
n
)
3
s
+
1
+
⋯ ⋯ -->
)
{\displaystyle {\begin{aligned}\sigma _{s}(n)&=n^{s}\zeta (s+1)\left({\frac {c_{1}(n)}{1^{s+1}}}+{\frac {c_{2}(n)}{2^{s+1}}}+{\frac {c_{3}(n)}{3^{s+1}}}+\cdots \right)\\\sigma _{-s}(n)&=\zeta (s+1)\left({\frac {c_{1}(n)}{1^{s+1}}}+{\frac {c_{2}(n)}{2^{s+1}}}+{\frac {c_{3}(n)}{3^{s+1}}}+\cdots \right)\end{aligned}}}
Setting s = 1 gives
σ σ -->
(
n
)
=
π π -->
2
6
n
(
c
1
(
n
)
1
+
c
2
(
n
)
4
+
c
3
(
n
)
9
+
⋯ ⋯ -->
)
.
{\displaystyle \sigma (n)={\frac {\pi ^{2}}{6}}n\left({\frac {c_{1}(n)}{1}}+{\frac {c_{2}(n)}{4}}+{\frac {c_{3}(n)}{9}}+\cdots \right).}
If the Riemann hypothesis is true, and
− − -->
1
2
<
s
<
1
2
,
{\displaystyle -{\tfrac {1}{2}}<s<{\tfrac {1}{2}},}
σ σ -->
s
(
n
)
=
ζ ζ -->
(
1
− − -->
s
)
(
c
1
(
n
)
1
1
− − -->
s
+
c
2
(
n
)
2
1
− − -->
s
+
c
3
(
n
)
3
1
− − -->
s
+
⋯ ⋯ -->
)
=
n
s
ζ ζ -->
(
1
+
s
)
(
c
1
(
n
)
1
1
+
s
+
c
2
(
n
)
2
1
+
s
+
c
3
(
n
)
3
1
+
s
+
⋯ ⋯ -->
)
.
{\displaystyle \sigma _{s}(n)=\zeta (1-s)\left({\frac {c_{1}(n)}{1^{1-s}}}+{\frac {c_{2}(n)}{2^{1-s}}}+{\frac {c_{3}(n)}{3^{1-s}}}+\cdots \right)=n^{s}\zeta (1+s)\left({\frac {c_{1}(n)}{1^{1+s}}}+{\frac {c_{2}(n)}{2^{1+s}}}+{\frac {c_{3}(n)}{3^{1+s}}}+\cdots \right).}
d (n )
d (n ) = σ0 (n ) is the number of divisors of n , including 1 and n itself.
− − -->
d
(
n
)
=
log
-->
1
1
c
1
(
n
)
+
log
-->
2
2
c
2
(
n
)
+
log
-->
3
3
c
3
(
n
)
+
⋯ ⋯ -->
− − -->
d
(
n
)
(
2
γ γ -->
+
log
-->
n
)
=
log
2
-->
1
1
c
1
(
n
)
+
log
2
-->
2
2
c
2
(
n
)
+
log
2
-->
3
3
c
3
(
n
)
+
⋯ ⋯ -->
{\displaystyle {\begin{aligned}-d(n)&={\frac {\log 1}{1}}c_{1}(n)+{\frac {\log 2}{2}}c_{2}(n)+{\frac {\log 3}{3}}c_{3}(n)+\cdots \\-d(n)(2\gamma +\log n)&={\frac {\log ^{2}1}{1}}c_{1}(n)+{\frac {\log ^{2}2}{2}}c_{2}(n)+{\frac {\log ^{2}3}{3}}c_{3}(n)+\cdots \end{aligned}}}
where γ = 0.5772... is the Euler–Mascheroni constant .
φ (n )
Euler's totient function φ(n ) is the number of positive integers less than n and coprime to n . Ramanujan defines a generalization of it, if
n
=
p
1
a
1
p
2
a
2
p
3
a
3
⋯ ⋯ -->
{\displaystyle n=p_{1}^{a_{1}}p_{2}^{a_{2}}p_{3}^{a_{3}}\cdots }
is the prime factorization of n , and s is a complex number, let
φ φ -->
s
(
n
)
=
n
s
(
1
− − -->
p
1
− − -->
s
)
(
1
− − -->
p
2
− − -->
s
)
(
1
− − -->
p
3
− − -->
s
)
⋯ ⋯ -->
,
{\displaystyle \varphi _{s}(n)=n^{s}(1-p_{1}^{-s})(1-p_{2}^{-s})(1-p_{3}^{-s})\cdots ,}
so that φ 1 (n ) = φ (n ) is Euler's function.[ 18]
He proves that
μ μ -->
(
n
)
n
s
φ φ -->
s
(
n
)
ζ ζ -->
(
s
)
=
∑ ∑ -->
ν ν -->
=
1
∞ ∞ -->
μ μ -->
(
n
ν ν -->
)
ν ν -->
s
{\displaystyle {\frac {\mu (n)n^{s}}{\varphi _{s}(n)\zeta (s)}}=\sum _{\nu =1}^{\infty }{\frac {\mu (n\nu )}{\nu ^{s}}}}
and uses this to show that
φ φ -->
s
(
n
)
ζ ζ -->
(
s
+
1
)
n
s
=
μ μ -->
(
1
)
c
1
(
n
)
φ φ -->
s
+
1
(
1
)
+
μ μ -->
(
2
)
c
2
(
n
)
φ φ -->
s
+
1
(
2
)
+
μ μ -->
(
3
)
c
3
(
n
)
φ φ -->
s
+
1
(
3
)
+
⋯ ⋯ -->
.
{\displaystyle {\frac {\varphi _{s}(n)\zeta (s+1)}{n^{s}}}={\frac {\mu (1)c_{1}(n)}{\varphi _{s+1}(1)}}+{\frac {\mu (2)c_{2}(n)}{\varphi _{s+1}(2)}}+{\frac {\mu (3)c_{3}(n)}{\varphi _{s+1}(3)}}+\cdots .}
Letting s = 1 ,
φ φ -->
(
n
)
=
6
π π -->
2
n
(
c
1
(
n
)
− − -->
c
2
(
n
)
2
2
− − -->
1
− − -->
c
3
(
n
)
3
2
− − -->
1
− − -->
c
5
(
n
)
5
2
− − -->
1
+
c
6
(
n
)
(
2
2
− − -->
1
)
(
3
2
− − -->
1
)
− − -->
c
7
(
n
)
7
2
− − -->
1
+
c
10
(
n
)
(
2
2
− − -->
1
)
(
5
2
− − -->
1
)
− − -->
⋯ ⋯ -->
)
.
{\displaystyle \varphi (n)={\frac {6}{\pi ^{2}}}n\left(c_{1}(n)-{\frac {c_{2}(n)}{2^{2}-1}}-{\frac {c_{3}(n)}{3^{2}-1}}-{\frac {c_{5}(n)}{5^{2}-1}}+{\frac {c_{6}(n)}{(2^{2}-1)(3^{2}-1)}}-{\frac {c_{7}(n)}{7^{2}-1}}+{\frac {c_{10}(n)}{(2^{2}-1)(5^{2}-1)}}-\cdots \right).}
Note that the constant is the inverse[ 19] of the one in the formula for σ(n ) .
Λ(n )
Von Mangoldt's function Λ(n ) = 0 unless n = pk is a power of a prime number, in which case it is the natural logarithm log p .
− − -->
Λ Λ -->
(
m
)
=
c
m
(
1
)
+
1
2
c
m
(
2
)
+
1
3
c
m
(
3
)
+
⋯ ⋯ -->
{\displaystyle -\Lambda (m)=c_{m}(1)+{\frac {1}{2}}c_{m}(2)+{\frac {1}{3}}c_{m}(3)+\cdots }
Zero
For all n > 0 ,
0
=
c
1
(
n
)
+
1
2
c
2
(
n
)
+
1
3
c
3
(
n
)
+
⋯ ⋯ -->
.
{\displaystyle 0=c_{1}(n)+{\frac {1}{2}}c_{2}(n)+{\frac {1}{3}}c_{3}(n)+\cdots .}
This is equivalent to the prime number theorem .[ 20] [ 21]
r 2s (n ) (sums of squares)
r 2s (n ) is the number of way of representing n as the sum of 2s squares , counting different orders and signs as different (e.g., r 2 (13) = 8 , as 13 = (±2)2 + (±3)2 = (±3)2 + (±2)2 .)
Ramanujan defines a function δ2s (n ) and references a paper[ 22] in which he proved that r 2s (n ) = δ2s (n ) for s = 1, 2, 3, and 4 . For s > 4 he shows that δ2s (n ) is a good approximation to r 2s (n ) .
s = 1 has a special formula:
δ δ -->
2
(
n
)
=
π π -->
(
c
1
(
n
)
1
− − -->
c
3
(
n
)
3
+
c
5
(
n
)
5
− − -->
⋯ ⋯ -->
)
.
{\displaystyle \delta _{2}(n)=\pi \left({\frac {c_{1}(n)}{1}}-{\frac {c_{3}(n)}{3}}+{\frac {c_{5}(n)}{5}}-\cdots \right).}
In the following formulas the signs repeat with a period of 4.
δ δ -->
2
s
(
n
)
=
π π -->
s
n
s
− − -->
1
(
s
− − -->
1
)
!
(
c
1
(
n
)
1
s
+
c
4
(
n
)
2
s
+
c
3
(
n
)
3
s
+
c
8
(
n
)
4
s
+
c
5
(
n
)
5
s
+
c
12
(
n
)
6
s
+
c
7
(
n
)
7
s
+
c
16
(
n
)
8
s
+
⋯ ⋯ -->
)
s
≡ ≡ -->
0
(
mod
4
)
δ δ -->
2
s
(
n
)
=
π π -->
s
n
s
− − -->
1
(
s
− − -->
1
)
!
(
c
1
(
n
)
1
s
− − -->
c
4
(
n
)
2
s
+
c
3
(
n
)
3
s
− − -->
c
8
(
n
)
4
s
+
c
5
(
n
)
5
s
− − -->
c
12
(
n
)
6
s
+
c
7
(
n
)
7
s
− − -->
c
16
(
n
)
8
s
+
⋯ ⋯ -->
)
s
≡ ≡ -->
2
(
mod
4
)
δ δ -->
2
s
(
n
)
=
π π -->
s
n
s
− − -->
1
(
s
− − -->
1
)
!
(
c
1
(
n
)
1
s
+
c
4
(
n
)
2
s
− − -->
c
3
(
n
)
3
s
+
c
8
(
n
)
4
s
+
c
5
(
n
)
5
s
+
c
12
(
n
)
6
s
− − -->
c
7
(
n
)
7
s
+
c
16
(
n
)
8
s
+
⋯ ⋯ -->
)
s
≡ ≡ -->
1
(
mod
4
)
and
s
>
1
δ δ -->
2
s
(
n
)
=
π π -->
s
n
s
− − -->
1
(
s
− − -->
1
)
!
(
c
1
(
n
)
1
s
− − -->
c
4
(
n
)
2
s
− − -->
c
3
(
n
)
3
s
− − -->
c
8
(
n
)
4
s
+
c
5
(
n
)
5
s
− − -->
c
12
(
n
)
6
s
− − -->
c
7
(
n
)
7
s
− − -->
c
16
(
n
)
8
s
+
⋯ ⋯ -->
)
s
≡ ≡ -->
3
(
mod
4
)
{\displaystyle {\begin{aligned}\delta _{2s}(n)&={\frac {\pi ^{s}n^{s-1}}{(s-1)!}}\left({\frac {c_{1}(n)}{1^{s}}}+{\frac {c_{4}(n)}{2^{s}}}+{\frac {c_{3}(n)}{3^{s}}}+{\frac {c_{8}(n)}{4^{s}}}+{\frac {c_{5}(n)}{5^{s}}}+{\frac {c_{12}(n)}{6^{s}}}+{\frac {c_{7}(n)}{7^{s}}}+{\frac {c_{16}(n)}{8^{s}}}+\cdots \right)&&s\equiv 0{\pmod {4}}\\[6pt]\delta _{2s}(n)&={\frac {\pi ^{s}n^{s-1}}{(s-1)!}}\left({\frac {c_{1}(n)}{1^{s}}}-{\frac {c_{4}(n)}{2^{s}}}+{\frac {c_{3}(n)}{3^{s}}}-{\frac {c_{8}(n)}{4^{s}}}+{\frac {c_{5}(n)}{5^{s}}}-{\frac {c_{12}(n)}{6^{s}}}+{\frac {c_{7}(n)}{7^{s}}}-{\frac {c_{16}(n)}{8^{s}}}+\cdots \right)&&s\equiv 2{\pmod {4}}\\[6pt]\delta _{2s}(n)&={\frac {\pi ^{s}n^{s-1}}{(s-1)!}}\left({\frac {c_{1}(n)}{1^{s}}}+{\frac {c_{4}(n)}{2^{s}}}-{\frac {c_{3}(n)}{3^{s}}}+{\frac {c_{8}(n)}{4^{s}}}+{\frac {c_{5}(n)}{5^{s}}}+{\frac {c_{12}(n)}{6^{s}}}-{\frac {c_{7}(n)}{7^{s}}}+{\frac {c_{16}(n)}{8^{s}}}+\cdots \right)&&s\equiv 1{\pmod {4}}{\text{ and }}s>1\\[6pt]\delta _{2s}(n)&={\frac {\pi ^{s}n^{s-1}}{(s-1)!}}\left({\frac {c_{1}(n)}{1^{s}}}-{\frac {c_{4}(n)}{2^{s}}}-{\frac {c_{3}(n)}{3^{s}}}-{\frac {c_{8}(n)}{4^{s}}}+{\frac {c_{5}(n)}{5^{s}}}-{\frac {c_{12}(n)}{6^{s}}}-{\frac {c_{7}(n)}{7^{s}}}-{\frac {c_{16}(n)}{8^{s}}}+\cdots \right)&&s\equiv 3{\pmod {4}}\\\end{aligned}}}
and therefore,
r
2
(
n
)
=
π π -->
(
c
1
(
n
)
1
− − -->
c
3
(
n
)
3
+
c
5
(
n
)
5
− − -->
c
7
(
n
)
7
+
c
11
(
n
)
11
− − -->
c
13
(
n
)
13
+
c
15
(
n
)
15
− − -->
c
17
(
n
)
17
+
⋯ ⋯ -->
)
r
4
(
n
)
=
π π -->
2
n
(
c
1
(
n
)
1
− − -->
c
4
(
n
)
4
+
c
3
(
n
)
9
− − -->
c
8
(
n
)
16
+
c
5
(
n
)
25
− − -->
c
12
(
n
)
36
+
c
7
(
n
)
49
− − -->
c
16
(
n
)
64
+
⋯ ⋯ -->
)
r
6
(
n
)
=
π π -->
3
n
2
2
(
c
1
(
n
)
1
− − -->
c
4
(
n
)
8
− − -->
c
3
(
n
)
27
− − -->
c
8
(
n
)
64
+
c
5
(
n
)
125
− − -->
c
12
(
n
)
216
− − -->
c
7
(
n
)
343
− − -->
c
16
(
n
)
512
+
⋯ ⋯ -->
)
r
8
(
n
)
=
π π -->
4
n
3
6
(
c
1
(
n
)
1
+
c
4
(
n
)
16
+
c
3
(
n
)
81
+
c
8
(
n
)
256
+
c
5
(
n
)
625
+
c
12
(
n
)
1296
+
c
7
(
n
)
2401
+
c
16
(
n
)
4096
+
⋯ ⋯ -->
)
{\displaystyle {\begin{aligned}r_{2}(n)&=\pi \left({\frac {c_{1}(n)}{1}}-{\frac {c_{3}(n)}{3}}+{\frac {c_{5}(n)}{5}}-{\frac {c_{7}(n)}{7}}+{\frac {c_{11}(n)}{11}}-{\frac {c_{13}(n)}{13}}+{\frac {c_{15}(n)}{15}}-{\frac {c_{17}(n)}{17}}+\cdots \right)\\[6pt]r_{4}(n)&=\pi ^{2}n\left({\frac {c_{1}(n)}{1}}-{\frac {c_{4}(n)}{4}}+{\frac {c_{3}(n)}{9}}-{\frac {c_{8}(n)}{16}}+{\frac {c_{5}(n)}{25}}-{\frac {c_{12}(n)}{36}}+{\frac {c_{7}(n)}{49}}-{\frac {c_{16}(n)}{64}}+\cdots \right)\\[6pt]r_{6}(n)&={\frac {\pi ^{3}n^{2}}{2}}\left({\frac {c_{1}(n)}{1}}-{\frac {c_{4}(n)}{8}}-{\frac {c_{3}(n)}{27}}-{\frac {c_{8}(n)}{64}}+{\frac {c_{5}(n)}{125}}-{\frac {c_{12}(n)}{216}}-{\frac {c_{7}(n)}{343}}-{\frac {c_{16}(n)}{512}}+\cdots \right)\\[6pt]r_{8}(n)&={\frac {\pi ^{4}n^{3}}{6}}\left({\frac {c_{1}(n)}{1}}+{\frac {c_{4}(n)}{16}}+{\frac {c_{3}(n)}{81}}+{\frac {c_{8}(n)}{256}}+{\frac {c_{5}(n)}{625}}+{\frac {c_{12}(n)}{1296}}+{\frac {c_{7}(n)}{2401}}+{\frac {c_{16}(n)}{4096}}+\cdots \right)\end{aligned}}}
r ′2s (n) (sums of triangles)
r
2
s
′
(
n
)
{\displaystyle r'_{2s}(n)}
is the number of ways n can be represented as the sum of 2s triangular numbers (i.e. the numbers 1, 3 = 1 + 2, 6 = 1 + 2 + 3, 10 = 1 + 2 + 3 + 4, 15, ...; the n -th triangular number is given by the formula n n + 1/ 2 .)
The analysis here is similar to that for squares. Ramanujan refers to the same paper as he did for the squares, where he showed that there is a function
δ δ -->
2
s
′
(
n
)
{\displaystyle \delta '_{2s}(n)}
such that
r
2
s
′
(
n
)
=
δ δ -->
2
s
′
(
n
)
{\displaystyle r'_{2s}(n)=\delta '_{2s}(n)}
for s = 1, 2, 3, and 4 , and that for s > 4 ,
δ δ -->
2
s
′
(
n
)
{\displaystyle \delta '_{2s}(n)}
is a good approximation to
r
2
s
′
(
n
)
.
{\displaystyle r'_{2s}(n).}
Again, s = 1 requires a special formula:
δ δ -->
2
′
(
n
)
=
π π -->
4
(
c
1
(
4
n
+
1
)
1
− − -->
c
3
(
4
n
+
1
)
3
+
c
5
(
4
n
+
1
)
5
− − -->
c
7
(
4
n
+
1
)
7
+
⋯ ⋯ -->
)
.
{\displaystyle \delta '_{2}(n)={\frac {\pi }{4}}\left({\frac {c_{1}(4n+1)}{1}}-{\frac {c_{3}(4n+1)}{3}}+{\frac {c_{5}(4n+1)}{5}}-{\frac {c_{7}(4n+1)}{7}}+\cdots \right).}
If s is a multiple of 4,
δ δ -->
2
s
′
(
n
)
=
(
π π -->
2
)
s
(
s
− − -->
1
)
!
(
n
+
s
4
)
s
− − -->
1
(
c
1
(
n
+
s
4
)
1
s
+
c
3
(
n
+
s
4
)
3
s
+
c
5
(
n
+
s
4
)
5
s
+
⋯ ⋯ -->
)
s
≡ ≡ -->
0
(
mod
4
)
δ δ -->
2
s
′
(
n
)
=
(
π π -->
2
)
s
(
s
− − -->
1
)
!
(
n
+
s
4
)
s
− − -->
1
(
c
1
(
2
n
+
s
2
)
1
s
+
c
3
(
2
n
+
s
2
)
3
s
+
c
5
(
2
n
+
s
2
)
5
s
+
⋯ ⋯ -->
)
s
≡ ≡ -->
2
(
mod
4
)
δ δ -->
2
s
′
(
n
)
=
(
π π -->
2
)
s
(
s
− − -->
1
)
!
(
n
+
s
4
)
s
− − -->
1
(
c
1
(
4
n
+
s
)
1
s
− − -->
c
3
(
4
n
+
s
)
3
s
+
c
5
(
4
n
+
s
)
5
s
− − -->
⋯ ⋯ -->
)
s
≡ ≡ -->
1
(
mod
2
)
and
s
>
1
{\displaystyle {\begin{aligned}\delta '_{2s}(n)&={\frac {({\frac {\pi }{2}})^{s}}{(s-1)!}}\left(n+{\frac {s}{4}}\right)^{s-1}\left({\frac {c_{1}(n+{\frac {s}{4}})}{1^{s}}}+{\frac {c_{3}(n+{\frac {s}{4}})}{3^{s}}}+{\frac {c_{5}(n+{\frac {s}{4}})}{5^{s}}}+\cdots \right)&&s\equiv 0{\pmod {4}}\\[6pt]\delta '_{2s}(n)&={\frac {({\frac {\pi }{2}})^{s}}{(s-1)!}}\left(n+{\frac {s}{4}}\right)^{s-1}\left({\frac {c_{1}(2n+{\frac {s}{2}})}{1^{s}}}+{\frac {c_{3}(2n+{\frac {s}{2}})}{3^{s}}}+{\frac {c_{5}(2n+{\frac {s}{2}})}{5^{s}}}+\cdots \right)&&s\equiv 2{\pmod {4}}\\[6pt]\delta '_{2s}(n)&={\frac {({\frac {\pi }{2}})^{s}}{(s-1)!}}\left(n+{\frac {s}{4}}\right)^{s-1}\left({\frac {c_{1}(4n+s)}{1^{s}}}-{\frac {c_{3}(4n+s)}{3^{s}}}+{\frac {c_{5}(4n+s)}{5^{s}}}-\cdots \right)&&s\equiv 1{\pmod {2}}{\text{ and }}s>1\end{aligned}}}
Therefore,
r
2
′
(
n
)
=
π π -->
4
(
c
1
(
4
n
+
1
)
1
− − -->
c
3
(
4
n
+
1
)
3
+
c
5
(
4
n
+
1
)
5
− − -->
c
7
(
4
n
+
1
)
7
+
⋯ ⋯ -->
)
r
4
′
(
n
)
=
(
π π -->
2
)
2
(
n
+
1
2
)
(
c
1
(
2
n
+
1
)
1
+
c
3
(
2
n
+
1
)
9
+
c
5
(
2
n
+
1
)
25
+
⋯ ⋯ -->
)
r
6
′
(
n
)
=
(
π π -->
2
)
3
2
(
n
+
3
4
)
2
(
c
1
(
4
n
+
3
)
1
− − -->
c
3
(
4
n
+
3
)
27
+
c
5
(
4
n
+
3
)
125
− − -->
⋯ ⋯ -->
)
r
8
′
(
n
)
=
(
π π -->
2
)
4
6
(
n
+
1
)
3
(
c
1
(
n
+
1
)
1
+
c
3
(
n
+
1
)
81
+
c
5
(
n
+
1
)
625
+
⋯ ⋯ -->
)
{\displaystyle {\begin{aligned}r'_{2}(n)&={\frac {\pi }{4}}\left({\frac {c_{1}(4n+1)}{1}}-{\frac {c_{3}(4n+1)}{3}}+{\frac {c_{5}(4n+1)}{5}}-{\frac {c_{7}(4n+1)}{7}}+\cdots \right)\\[6pt]r'_{4}(n)&=\left({\frac {\pi }{2}}\right)^{2}\left(n+{\frac {1}{2}}\right)\left({\frac {c_{1}(2n+1)}{1}}+{\frac {c_{3}(2n+1)}{9}}+{\frac {c_{5}(2n+1)}{25}}+\cdots \right)\\[6pt]r'_{6}(n)&={\frac {({\frac {\pi }{2}})^{3}}{2}}\left(n+{\frac {3}{4}}\right)^{2}\left({\frac {c_{1}(4n+3)}{1}}-{\frac {c_{3}(4n+3)}{27}}+{\frac {c_{5}(4n+3)}{125}}-\cdots \right)\\[6pt]r'_{8}(n)&={\frac {({\frac {\pi }{2}})^{4}}{6}}(n+1)^{3}\left({\frac {c_{1}(n+1)}{1}}+{\frac {c_{3}(n+1)}{81}}+{\frac {c_{5}(n+1)}{625}}+\cdots \right)\end{aligned}}}
Sums
Let
T
q
(
n
)
=
c
q
(
1
)
+
c
q
(
2
)
+
⋯ ⋯ -->
+
c
q
(
n
)
U
q
(
n
)
=
T
q
(
n
)
+
1
2
ϕ ϕ -->
(
q
)
{\displaystyle {\begin{aligned}T_{q}(n)&=c_{q}(1)+c_{q}(2)+\cdots +c_{q}(n)\\U_{q}(n)&=T_{q}(n)+{\tfrac {1}{2}}\phi (q)\end{aligned}}}
Then for s > 1 ,
σ σ -->
− − -->
s
(
1
)
+
⋯ ⋯ -->
+
σ σ -->
− − -->
s
(
n
)
=
ζ ζ -->
(
s
+
1
)
(
n
+
T
2
(
n
)
2
s
+
1
+
T
3
(
n
)
3
s
+
1
+
T
4
(
n
)
4
s
+
1
+
⋯ ⋯ -->
)
=
ζ ζ -->
(
s
+
1
)
(
n
+
1
2
+
U
2
(
n
)
2
s
+
1
+
U
3
(
n
)
3
s
+
1
+
U
4
(
n
)
4
s
+
1
+
⋯ ⋯ -->
)
− − -->
1
2
ζ ζ -->
(
s
)
d
(
1
)
+
⋯ ⋯ -->
+
d
(
n
)
=
− − -->
T
2
(
n
)
log
-->
2
2
− − -->
T
3
(
n
)
log
-->
3
3
− − -->
T
4
(
n
)
log
-->
4
4
− − -->
⋯ ⋯ -->
d
(
1
)
log
-->
1
+
⋯ ⋯ -->
+
d
(
n
)
log
-->
n
=
− − -->
T
2
(
n
)
(
2
γ γ -->
log
-->
2
− − -->
log
2
-->
2
)
2
− − -->
T
3
(
n
)
(
2
γ γ -->
log
-->
3
− − -->
log
2
-->
3
)
3
− − -->
T
4
(
n
)
(
2
γ γ -->
log
-->
4
− − -->
log
2
-->
4
)
4
− − -->
⋯ ⋯ -->
r
2
(
1
)
+
⋯ ⋯ -->
+
r
2
(
n
)
=
π π -->
(
n
− − -->
T
3
(
n
)
3
+
T
5
(
n
)
5
− − -->
T
7
(
n
)
7
+
⋯ ⋯ -->
)
{\displaystyle {\begin{aligned}\sigma _{-s}(1)+\cdots +\sigma _{-s}(n)&=\zeta (s+1)\left(n+{\frac {T_{2}(n)}{2^{s+1}}}+{\frac {T_{3}(n)}{3^{s+1}}}+{\frac {T_{4}(n)}{4^{s+1}}}+\cdots \right)\\&=\zeta (s+1)\left(n+{\tfrac {1}{2}}+{\frac {U_{2}(n)}{2^{s+1}}}+{\frac {U_{3}(n)}{3^{s+1}}}+{\frac {U_{4}(n)}{4^{s+1}}}+\cdots \right)-{\tfrac {1}{2}}\zeta (s)\\d(1)+\cdots +d(n)&=-{\frac {T_{2}(n)\log 2}{2}}-{\frac {T_{3}(n)\log 3}{3}}-{\frac {T_{4}(n)\log 4}{4}}-\cdots \\d(1)\log 1+\cdots +d(n)\log n&=-{\frac {T_{2}(n)(2\gamma \log 2-\log ^{2}2)}{2}}-{\frac {T_{3}(n)(2\gamma \log 3-\log ^{2}3)}{3}}-{\frac {T_{4}(n)(2\gamma \log 4-\log ^{2}4)}{4}}-\cdots \\r_{2}(1)+\cdots +r_{2}(n)&=\pi \left(n-{\frac {T_{3}(n)}{3}}+{\frac {T_{5}(n)}{5}}-{\frac {T_{7}(n)}{7}}+\cdots \right)\end{aligned}}}
See also
Notes
^ Ramanujan, On Certain Trigonometric Sums ... These sums are obviously of great interest, and a few of their properties have been discussed already. But, so far as I know, they have never been considered from the point of view which I adopt in this paper; and I believe that all the results which it contains are new.
(Papers , p. 179). In a footnote cites pp. 360–370 of the Dirichlet–Dedekind Vorlesungen über Zahlentheorie , 4th ed.
^ Nathanson, ch. 8.
^ Hardy & Wright, Thms 65, 66
^ G. H. Hardy, P. V. Seshu Aiyar, & B. M. Wilson, notes to On certain trigonometrical sums ... , Ramanujan, Papers , p. 343
^ Schwarz & Spilken (1994) p.16
^ B. Berndt, commentary to On certain trigonometrical sums... , Ramanujan, Papers , p. 371
^ Knopfmacher, p. 196
^ Hardy & Wright, p. 243
^ Tóth, external links, eq. 6
^ Tóth, external links, eq. 17.
^ Tóth, external links, eq. 8.
^ B. Berndt, commentary to On certain trigonometrical sums... , Ramanujan, Papers , pp. 369–371
^ Ramanujan, On certain trigonometrical sums... The majority of my formulae are "elementary" in the technical sense of the word — they can (that is to say) be proved by a combination of processes involving only finite algebra and simple general theorems concerning infinite series
(Papers , p. 179)
^ The theory of formal Dirichlet series is discussed in Hardy & Wright, § 17.6 and in Knopfmacher.
^ Knopfmacher, ch. 7, discusses Ramanujan expansions as a type of Fourier expansion in an inner product space which has the c q as an orthogonal basis .
^ Ramanujan, On Certain Arithmetical Functions
^ Nicol, p. 1
^ This is Jordan's totient function , Js (n ) .
^ Cf. Hardy & Wright, Thm. 329, which states that
6
π π -->
2
<
σ σ -->
(
n
)
ϕ ϕ -->
(
n
)
n
2
<
1.
{\displaystyle \;{\frac {6}{\pi ^{2}}}<{\frac {\sigma (n)\phi (n)}{n^{2}}}<1.}
^ Hardy, Ramanujan , p. 141
^ B. Berndt, commentary to On certain trigonometrical sums... , Ramanujan, Papers , p. 371
^ Ramanujan, On Certain Arithmetical Functions
References
Hardy, G. H. (1999). Ramanujan: Twelve Lectures on Subjects Suggested by his Life and Work . Providence RI: AMS / Chelsea. ISBN 978-0-8218-2023-0 .
Nathanson, Melvyn B. (1996). Additive Number Theory: the Classical Bases . Graduate Texts in Mathematics. Vol. 164. Springer-Verlag. Section A.7. ISBN 0-387-94656-X . Zbl 0859.11002 . .
Ramanujan, Srinivasa (1918). "On Certain Trigonometric Sums and their Applications in the Theory of Numbers". Transactions of the Cambridge Philosophical Society . 22 (15): 259– 276. (pp. 179–199 of his Collected Papers )
Ramanujan, Srinivasa (1916). "On Certain Arithmetical Functions". Transactions of the Cambridge Philosophical Society . 22 (9): 159– 184. (pp. 136–163 of his Collected Papers )
Schwarz, Wolfgang; Spilker, Jürgen (1994). Arithmetical Functions. An introduction to elementary and analytic properties of arithmetic functions and to some of their almost-periodic properties . London Mathematical Society Lecture Note Series. Vol. 184. Cambridge University Press . ISBN 0-521-42725-8 . Zbl 0807.11001 .
External links