Von Mangoldt function

In mathematics, the von Mangoldt function is an arithmetic function named after German mathematician Hans von Mangoldt. It is an example of an important arithmetic function that is neither multiplicative nor additive.

Definition

The von Mangoldt function, denoted by Λ(n), is defined as

The values of Λ(n) for the first nine positive integers (i.e. natural numbers) are

which is related to (sequence A014963 in the OEIS).

Properties

The von Mangoldt function satisfies the identity[1][2]

The sum is taken over all integers d that divide n. This is proved by the fundamental theorem of arithmetic, since the terms that are not powers of primes are equal to 0. For example, consider the case n = 12 = 22 × 3. Then

By Möbius inversion, we have

and using the product rule for the logarithm we get[2][3][4]

For all , we have[5]

Also, there exist positive constants c1 and c2 such that

for all , and

for all sufficiently large x.

Dirichlet series

The von Mangoldt function plays an important role in the theory of Dirichlet series, and in particular, the Riemann zeta function. For example, one has

The logarithmic derivative is then[6]

These are special cases of a more general relation on Dirichlet series. If one has

for a completely multiplicative function f(n), and the series converges for Re(s) > σ0, then

converges for Re(s) > σ0.

Chebyshev function

The second Chebyshev function ψ(x) is the summatory function of the von Mangoldt function:[7]

It was introduced by Pafnuty Chebyshev who used it to show that the true order of the prime counting function is . Von Mangoldt provided a rigorous proof of an explicit formula for ψ(x) involving a sum over the non-trivial zeros of the Riemann zeta function. This was an important part of the first proof of the prime number theorem.

The Mellin transform of the Chebyshev function can be found by applying Perron's formula:

which holds for Re(s) > 1.

Exponential series

Hardy and Littlewood examined the series[8]

in the limit y → 0+. Assuming the Riemann hypothesis, they demonstrate that

In particular this function is oscillatory with diverging oscillations: there exists a value K > 0 such that both inequalities

hold infinitely often in any neighbourhood of 0. The graphic to the right indicates that this behaviour is not at first numerically obvious: the oscillations are not clearly seen until the series is summed in excess of 100 million terms, and are only readily visible when y < 10−5.

Riesz mean

The Riesz mean of the von Mangoldt function is given by

Here, λ and δ are numbers characterizing the Riesz mean. One must take c > 1. The sum over ρ is the sum over the zeroes of the Riemann zeta function, and

can be shown to be a convergent series for λ > 1.

Approximation by Riemann zeta zeros

The first Riemann zeta zero wave in the sum that approximates the von Mangoldt function

There is an explicit formula for the summatory Mangoldt function given by[9]

If we separate out the trivial zeros of the zeta function, which are the negative even integers, we obtain

(The sum is not absolutely convergent, so we take the zeros in order of the absolute value of their imaginary part.)

In the opposite direction, in 1911 E. Landau proved that for any fixed t > 1[10]

(We use the notation ρ = β + iγ for the non-trivial zeros of the zeta function.)

(Left) The von Mangoldt function, approximated by zeta zero waves.(Right) The Fourier transform of the von Mangoldt function gives a spectrum with imaginary parts of Riemann zeta zeros as spikes.

Therefore, if we use Riemann notation α = −i(ρ − 1/2) we have that the sum over nontrivial zeta zeros expressed as

peaks at primes and powers of primes.

The Fourier transform of the von Mangoldt function gives a spectrum with spikes at ordinates equal to the imaginary parts of the Riemann zeta function zeros. This is sometimes called a duality.

Generalized von Mangoldt function

The functions

where denotes the Möbius function and denotes a positive integer, generalize the von Mangoldt function.[11] The function is the ordinary von Mangoldt function .

See also

References

  1. ^ Apostol (1976) p.32
  2. ^ a b Tenenbaum (1995) p.30
  3. ^ Apostol (1976) p.33
  4. ^ Schroeder, Manfred R. (1997). Number theory in science and communication. With applications in cryptography, physics, digital information, computing, and self-similarity. Springer Series in Information Sciences. Vol. 7 (3rd ed.). Berlin: Springer-Verlag. ISBN 3-540-62006-0. Zbl 0997.11501.
  5. ^ Apostol (1976) p.88
  6. ^ Hardy & Wright (2008) §17.7, Theorem 294
  7. ^ Apostol (1976) p.246
  8. ^ Hardy, G. H. & Littlewood, J. E. (1916). "Contributions to the Theory of the Riemann Zeta-Function and the Theory of the Distribution of Primes" (PDF). Acta Mathematica. 41: 119–196. doi:10.1007/BF02422942. Archived from the original (PDF) on 2012-02-07. Retrieved 2014-07-03.
  9. ^ Conrey, J. Brian (March 2003). "The Riemann hypothesis" (PDF). Notices Am. Math. Soc. 50 (3): 341–353. Zbl 1160.11341. Page 346
  10. ^ E. Landau, Über die Nullstellen der Zetafunktion, Math. Annalen 71 (1911 ), 548-564.
  11. ^ Iwaniec, Henryk; Friedlander, John (2010), Opera de cribro, American Mathematical Society Colloquium Publications, vol. 57, Providence, RI: American Mathematical Society, p. 23, ISBN 978-0-8218-4970-5, MR 2647984

Read other articles:

Dalam komputasi, drive hibrid ( solid state hybrid drive – SSHD ) adalah perangkat penyimpanan logis atau fisik yang menggabungkan media penyimpanan lebih cepat seperti solid-state drive (SSD) dengan hard disk drive (HDD) berkapasitas lebih tinggi. Tujuannya adalah menambahkan beberapa kecepatan SSD ke kapasitas penyimpanan HDD tradisional yang hemat biaya. Tujuan SSD dalam drive hibrid adalah bertindak sebagai cache untuk data yang disimpan di HDD, meningkatkan kinerja keseluruhan dengan m...

 

 

Westinghouse Works1904 film Westinghouse Works CinematographyG. W. BitzerProductioncompanyAmerican Mutoscope and Biograph CompanyRelease date1904 Westinghouse Works, 1904 is a collection of American short silent films, each averaging about three minutes in length. The films were taken from April 18, 1904, to May 16, 1904, in Pittsburgh, Pennsylvania, and document various Westinghouse manufacturing plants.[1] They were made by G. W. Billy Bitzer of the American Mutoscope and Biograph C...

 

 

2020 edition of the Australia Open tennis championships Further information on singles results at: Men's singles draw and Women's singles draw Tennis tournament2020 Australian OpenDate20 January – 2 February 2020Edition108thOpen Era (52nd)CategoryGrand SlamDraw128 singles players, 64 doubles pairs and 32 mixed doubles pairsPrize moneyA$71,000,000SurfaceHard (Plexicushion)LocationMelbourne, Victoria, AustraliaVenueMelbourne ParkChampionsMen's singles Novak DjokovicWomen's singles So...

  لمعانٍ أخرى، طالع روبرت ويلسون (توضيح). روبرت ويلسون معلومات شخصية الميلاد 16 مايو 1937 (87 سنة)  جنيفا  مواطنة الولايات المتحدة  عضو في الأكاديمية الوطنية للعلوم[1]،  والأكاديمية الأمريكية للفنون والعلوم[2]،  وجمعية الاقتصاد القياسي  [لغات أخرى]&#...

 

 

Book by Oscar Zeta Acosta The Revolt of the Cockroach People First editionAuthorOscar Zeta AcostaCountryUnited StatesLanguageEnglishPublisherStraight Arrow PressPublication date1973Pages258ISBN0-87932-060-5Preceded byAutobiography of a Brown Buffalo  The Revolt of the Cockroach People is a novel by Oscar Zeta Acosta. It tells the story of a Chicano lawyer, Buffalo Zeta Brown, fictionalizing events from Oscar Acosta's own life, including the East L.A. walkouts at Garfield High School...

 

 

Saudi ArabiaInformationAssociationSaudi Arabian Handball FederationCoachErlingur RichardssonCaptainHassan Al-JanabiColours 1st 2nd ResultsWorld ChampionshipAppearances10 (First in 2003)Best result19th (2003, 2013)Asian ChampionshipAppearances15 (First in 1977)Best result 3rd (2002, 2008, 2012, 2022) Last updated on Unknown. The Saudi Arabia national handball team is the national handball team of Saudi Arabia and is controlled by the Saudi Arabian Handball Federation. The team has participate...

UBI Banca - Unione di Banche ItalianeLogo La sede storica della ex UBI Banca, a Bergamo Stato Italia Forma societariaSocietà per azioni Fondazione1º aprile 2007 Fondata daBPU Banca - Banche Popolari UniteBanca Lombarda e Piemontese Chiusura12 aprile 2021 (Fusione per incorporazione in Intesa Sanpaolo)[1] Sede principaleBergamo GruppoIntesa Sanpaolo Persone chiave Paolo Maria Grandi (presidente) Gaetano Miccichè (consigliere delegato e DG) SettoreBancario Fatturato3,592 miliard...

 

 

Danau BaturDanau BaturLetakKintamani, Kabupaten Bangli, Bali, IndonesiaKoordinat08°15′30″S 115°24′30″E / 8.25833°S 115.40833°E / -8.25833; 115.40833Koordinat: 08°15′30″S 115°24′30″E / 8.25833°S 115.40833°E / -8.25833; 115.40833Jenis perairanPolimiktik, danau kawahPanjang maksimal2,5 km (1,6 mi)Lebar maksimal7,5 km (4,7 mi)Area permukaan15,9 km2 (3.900 ekar)Kedalaman maksimal88 m (289 ft)...

 

 

GatalSeorang pria menggaruk punggungnyaInformasi umumSpesialisasiDermatologi  Seekor tupai yang menggaruk dirinya sendiri. Gatal (dikenal juga sebagai pruritus) adalah suatu sensasi yang menimbulkan keinginan atau refleks menggaruk.[1] Terjadi perdebatan apakan gatal dapat diklasifikasikan sebagai salah satu jenis pengalaman sensoris. Ilmu pengetahuan modern telah menunjukkan bahwa gatal memiliki banyak kesamaan dengan rasa nyeri, dan keduanya merupakan pengalaman sensorik yang t...

Politics of São Tomé and Príncipe Constitution Human rights LGBT rights Executive President Carlos Vila Nova Government Prime Minister Patrice Trovoada Council of Ministers Legislature National Assembly President: Jose da Graca Diogo Judiciary Supreme Court of Justice Elections Recent elections Presidential: 20162021 Legislative: 20182022 Political parties Administrative divisions Autonomous Region of Príncipe Districts Foreign relations Ministry of Foreign Affairs, Cooperation and Commu...

 

 

This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: List of United States presidential elections by Electoral College margin – news · newspapers · books · scholar · JSTOR (October 2011) In United States presidential elections, citizens who are registered to vote cast ballots for members of the Elector...

 

 

Резолюція Ради Безпеки ООН ES-11/1    За    Проти    Утримались    Відсутні    не є членом ООНДата 2 березня 2022Засідання 11-а надзвичайна спеціальна сесія (продовження)Код A/RES/ES-11/1 (Документ)Предмет Російське вторгнення в Україну (2022)Результат голосування...

American college basketball season This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: 2009–10 Indiana Hoosiers men's basketball team – news · newspapers · books · scholar · JSTOR (October 2010) (Learn how and when to remove this message) 2009–10 Indiana Hoosiers men's basketballConferenceBig Ten ConferenceR...

 

 

比亚斯福特斯Bias Fortes市镇比亚斯福特斯在巴西的位置坐标:21°36′21″S 43°45′25″W / 21.6058°S 43.7569°W / -21.6058; -43.7569国家巴西州米纳斯吉拉斯州面积 • 总计284.271 平方公里(109.758 平方英里)海拔850 公尺(2,790 英尺)人口 • 總計3,880人 • 密度13.6人/平方公里(35.4人/平方英里) 比亚斯福特斯(葡萄牙语:Bias Fortes)�...

 

 

Not to be confused with his brother, Jean-François Autié, also called Monsieur Léonard. Léonard AutiéLéonard-Alexis Autié, 1905 sketch by unknownBorn1751Died20 March 1820Other namesLéonard-Alexis AutiéOccupationHairdresser for Queen Marie Antoinette of FranceSignature Léonard-Alexis Autié, also Autier[1] (c. 1751 – 20 March 1820), often referred to simply as Monsieur Léonard, was the favourite hairdresser of Queen Marie Antoinette and in 1788–1789 founded the Thé...

Location of Levice District in the Nitra Region Keť (Hungarian: Érsekkéty) is a village and municipality in the Levice District in the Nitra Region of Slovakia. History In historical records the village was first mentioned in 1308. Geography The village lies at an altitude of 150 metres and covers an area of 19.65 km2. It has a population of about 680 people. Ethnicity The village is approximately 94% Magyar and 6% Slovak. Government The village has its own birth registry. Facilities ...

 

 

This article needs to be updated. Please help update this article to reflect recent events or newly available information. (June 2024) Violence against LGBT people is part of the ideology of ISIL, which mandates capital punishment for homosexuality within its territory, in Iraq, Syria and Libya. LGBT rights in Islamic State of Iraq and the Levant (ISIL)Islamic stateStatusIllegal: Islamic law (sharīʿa) is appliedPenaltyExecution, imprisonment, lashings, fines, vigilante tortures, beatings, ...

 

 

В Википедии есть статьи о других людях с такой фамилией, см. Хуциев. Марлен Хуциев Имя при рождении груз. მარლენ ხუციევი Дата рождения 4 октября 1925(1925-10-04)[1][2][…] Место рождения Тифлис,Грузинская ССР,ЗСФСР, СССР Дата смерти 19 марта 2019(2019-03-19) (93 года) Мес�...

Primeira Divisão 1977-1978 Competizione Primeira Divisão Sport Calcio Edizione 40ª Organizzatore FPF Luogo  Portogallo Partecipanti 16 Risultati Vincitore Porto(6º titolo) Retrocessioni PortimonenseEspinhoRiopeleFeirense Statistiche Miglior marcatore Fernando Gomes (25) Incontri disputati 240 Gol segnati 585 (2,44 per incontro) Cronologia della competizione 1976-77 1978-79 Manuale La Primeira Divisão 1977-1978 è stata la 40ª edizione della massima serie del campionato p...

 

 

この項目には、一部のコンピュータや閲覧ソフトで表示できない文字(Microsoftコードページ932(はしご高))が含まれています(詳細)。 スーパー電波バザール年越しジャンボ同窓会ジャンル 年越し番組構成 宮下康仁ほかディレクター スタッフ参照演出 土屋泰則塩谷憲昭、櫨山裕子司会者 徳光和夫所ジョージ出演者 ダウンタウンアナウンサー 永井美奈子米森麻美�...