Radiative zone

An illustration of the structure of the Sun

A radiative zone is a layer of a star's interior where energy is primarily transported toward the exterior by means of radiative diffusion and thermal conduction, rather than by convection.[1] Energy travels through the radiative zone in the form of electromagnetic radiation as photons.

Matter in a radiative zone is so dense that photons can travel only a short distance before they are absorbed or scattered by another particle, gradually shifting to longer wavelength as they do so. For this reason, it takes an average of 171,000 years for gamma rays from the core of the Sun to leave the radiative zone. Over this range, the temperature of the plasma drops from 15 million K near the core down to 1.5 million K at the base of the convection zone.[2]

Temperature gradient

In a radiative zone, the temperature gradient—the change in temperature (T) as a function of radius (r)—is given by:

where κ(r) is the opacity, ρ(r) is the matter density, L(r) is the luminosity, and σB is the Stefan–Boltzmann constant.[1] Hence the opacity (κ) and radiation flux (L) within a given layer of a star are important factors in determining how effective radiative diffusion is at transporting energy. A high opacity or high luminosity can cause a high temperature gradient, which results from a slow flow of energy. Those layers where convection is more effective than radiative diffusion at transporting energy, thereby creating a lower temperature gradient, will become convection zones.[3]

This relation can be derived by integrating Fick's first law over the surface of some radius r, giving the total outgoing energy flux which is equal to the luminosity by conservation of energy:

Where D is the photons diffusion coefficient, and u is the energy density.

The energy density is related to the temperature by Stefan–Boltzmann law by:

Finally, as in the elementary theory of diffusion coefficient in gases, the diffusion coefficient D approximately satisfies:

where λ is the photon mean free path, and is the reciprocal of the opacity κ.

Eddington stellar model

Eddington assumed the pressure P in a star is a combination of an ideal gas pressure and radiation pressure, and that there is a constant ratio, β, of the gas pressure to the total pressure. Therefore, by the ideal gas law:

where kB is Boltzmann constant and μ the mass of a single atom (actually, an ion since matter is ionized; usually a hydrogen ion, i.e. a proton). While the radiation pressure satisfies:

so that T4 is proportional to P throughout the star.

This gives the polytropic equation (with n=3):[4]

Using the hydrostatic equilibrium equation, the second equation becomes equivalent to:

For energy transmission by radiation only, we may use the equation for the temperature gradient (presented in the previous subsection) for the right-hand side and get

Thus the Eddington model is a good approximation in the radiative zone as long as κL/M is approximately constant, which is often the case.[4]

Stability against convection

The radiation zone is stable against formation of convection cells if the density gradient is high enough, so that an element moving upwards has its density lowered (due to adiabatic expansion) less than the drop in density of its surrounding, so that it will experience a net buoyancy force downwards.

The criterion for this is:

where P is the pressure, ρ the density and is the heat capacity ratio.

For a homogenic ideal gas, this is equivalent to:

We can calculate the left-hand side by dividing the equation for the temperature gradient by the equation relating the pressure gradient to the gravity acceleration g:

M(r) being the mass within the sphere of radius r, and is approximately the whole star mass for large enough r.

This gives the following form of the Schwarzschild criterion for stability against convection:[4]: 64 

Note that for non-homogenic gas this criterion should be replaced by the Ledoux criterion, because the density gradient now also depends on concentration gradients.

For a polytrope solution with n=3 (as in the Eddington stellar model for radiative zone), P is proportional to T4 and the left-hand side is constant and equals 1/4, smaller than the ideal monatomic gas approximation for the right-hand side giving . This explains the stability of the radiative zone against convection.

However, at a large enough radius, the opacity κ increases due to the decrease in temperature (by Kramers' opacity law), and possibly also due to a smaller degree of ionization in the lower shells of heavy elements ions.[5] This leads to a violation of the stability criterion and to the creation of the convection zone; in the sun, opacity increases by more than a tenfold across the radiative zone, before the transition to the convection zone happens.[6]

Additional situations in which this stability criterion is not met are:

  • Large values of , which may happen towards the star core's center, where M(r) is small, if nuclear energy production is strongly peaked at the center, as in relatively massive stars. Thus such stars have a convective core.
  • A smaller value of . For semi-ionized gas, where approximately half of the atoms are ionized, the effective value of drops to 6/5,[4]: 37  giving . Therefore, all stars have shallow convection zones near their surfaces, at low enough temperatures where ionization is only partial.

Main sequence stars

For main sequence stars—those stars that are generating energy through the thermonuclear fusion of hydrogen at the core, the presence and location of radiative regions depends on the star's mass. Main sequence stars below about 0.3 solar masses are entirely convective, meaning they do not have a radiative zone. From 0.3 to 1.2 solar masses, the region around the stellar core is a radiative zone, separated from the overlying convection zone by the tachocline. The radius of the radiative zone increases monotonically with mass, with stars around 1.2 solar masses being almost entirely radiative. Above 1.2 solar masses, the core region becomes a convection zone and the overlying region is a radiative zone, with the amount of mass within the convective zone increasing with the mass of the star.[7]

The Sun

In the Sun, the region between the solar core at 0.2 of the Sun's radius and the outer convection zone at 0.71 of the Sun's radius is referred to as the radiation zone, although the core is also a radiative region.[1] The convection zone and the radiative zone are divided by the tachocline, another part of the Sun.

Notes and references

  1. ^ a b c Ryan, Sean G.; Norton, Andrew J. (2010). Stellar evolution and nucleosynthesis. Cambridge: Cambridge University Press. p. 19. ISBN 978-0-521-19609-3.
  2. ^ Elkins-Tanton, Linda T.; Elkins-Tanton, Linda T. (2006). The Sun, Mercury, and Venus. The solar system. New York: Chelsea House. p. 24. ISBN 978-0-8160-5193-9. OCLC 60454390.
  3. ^ LeBlanc, Francis (2010). An Introduction to Stellar Astrophysics (1st ed.). John Wiley and Sons. p. 168. ISBN 978-1-119-96497-1.
  4. ^ a b c d Pols, Onno Rudolf (2011). Stellar Structure and Evolution. Astronomical Institute Utrecht.
  5. ^ Krief, M.; Feigel, A.; Gazit, D. (2016-04-10). "Solar opacity calculations using the super-transition-array method". The Astrophysical Journal. 821 (1): 45. arXiv:1601.01930. Bibcode:2016ApJ...821...45K. doi:10.3847/0004-637X/821/1/45. ISSN 0004-637X.
  6. ^ Turck-Chièze, Sylvaine; Couvidat, Sébastien (2011-08-01). "Solar neutrinos, helioseismology and the solar internal dynamics". Reports on Progress in Physics. 74 (8): 086901. arXiv:1009.0852. Bibcode:2011RPPh...74h6901T. doi:10.1088/0034-4885/74/8/086901. ISSN 0034-4885. PMID 34996296.
  7. ^ Padmanabhan, Thanu (2001). Theoretical astrophysics. 2: Stars and stellar systems. Vol. 2. Cambridge: Cambridge Univ. Press. p. 80. ISBN 978-0-521-56631-5.

Read other articles:

Gorō NonakaNama asli野中 五郎Lahir18 November 1910Yotsuya, Prefektur Tokyo, JepangMeninggal21 Maret 1945(1945-03-21) (umur 34)Prefektur Miyazaki, Tanjung Toi Misaki, JepangPengabdianAngkatan Laut Kekaisaran JepangLama dinas1934 - 1945Pangkat Kolonel Gorō Nonaka (野中五郎code: ja is deprecated , のなか ごろう) adalah seorang pilot Angkatan Laut Kekaisaran Jepang. Ia merupakan pilot veteran dalam membawa pesawat pengebom sedang dan pesawat pengebom torpedo. Ia digadang...

 

Haarbach. Haarbach adalah kota yang terletak di distrik Passau di Bavaria, Jerman. Kota Haarbach memiliki luas sebesar 47.71 km². Haarbach pada tahun 2006, memiliki penduduk sebanyak 2.592 jiwa. lbsKota dan kotamadya di PassauAicha vorm Wald | Aidenbach | Aldersbach | Bad Füssing | Bad Griesbach im Rottal | Beutelsbach | Breitenberg | Büchlberg | Eging am See | Fürstenstein | Fürstenzell | Haarbach | Hauzenberg | Hofki...

 

Gubernur Daerah Istimewa Yogyakartaꦒꦸꦧꦼꦂꦤꦸꦂꦝꦌꦫꦃꦆꦱ꧀ꦠꦶꦩꦺꦮꦪꦺꦴꦒꦾꦏꦂꦠLambang daerahPetahanaHamengkubuwana Xsejak 3 Oktober 1998GelarIngkang Sinuwun Sri Sultan (ISSS)KediamanKeraton Ngayogyakarta HadiningratMasa jabatan5 tahun, diperpanjang sampai seumur hidupDibentuk4 Maret 1950; 74 tahun lalu (1950-03-04)Pejabat pertamaHamengkubuwana IXSitus webSitus Resmi Pemda DIY Sesuai dengan tradisi[1] dan UU 13/2012 tentang Keistimewaa...

Berbagai jenis sirkuit terpadu penguat operasional dalam konfigurasi 8-pin. Penguat operasional (bahasa Inggris: operational amplifier) atau yang biasa disebut op-amp merupakan suatu jenis penguat elektronika dengan sambatan (bahasa Inggris: coupling) arus searah yang memiliki bati (faktor penguatan atau dalam bahasa Inggris: gain) sangat besar dengan dua masukan dan satu keluaran.[1][2] Penguat operasional pada umumnya tersedia dalam bentuk sirkuit terpadu dan yang paling ban...

 

العلاقات الدومينيكية الكندية دومينيكا كندا   دومينيكا   كندا تعديل مصدري - تعديل   العلاقات الدومينيكية الكندية هي العلاقات الثنائية التي تجمع بين دومينيكا وكندا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة...

 

See also: Dispute over the oldest school in the Philippines This is a dynamic list and may never be able to satisfy particular standards for completeness. You can help by adding missing items with reliable sources. The Royal and Pontifical University of Santo Tomas, established by the Dominican missionaries in 1611 and raised to the rank of a University in 1645 by Pope Innocent X through the petition of Philip IV of Spain, is currently the educational institution with the oldest extant Unive...

One of the ancient Sanskrit scriptures of Hinduism Mundaka Upanishad manuscript page, verses 3.2.8 to 3.2.10, Atharvaveda (Sanskrit, Devanagari script). Part of a series onHindu scriptures and texts Shruti Smriti List Vedas Rigveda Samaveda Yajurveda Atharvaveda Divisions Samhita Brahmana Aranyaka Upanishads UpanishadsRig vedic Aitareya Kaushitaki Sama vedic Chandogya Kena Yajur vedic Brihadaranyaka Isha Taittiriya Katha Shvetashvatara Maitri Atharva vedic Mundaka Mandukya Prashna Other scrip...

 

American actor (born 1944) This article is about the American actor. For the talk show host, see Mike Douglas. For other people named Michael Douglas, see Michael Douglas (disambiguation). Michael DouglasDouglas at the 2016 César AwardsBornMichael Kirk Douglas (1944-09-25) September 25, 1944 (age 79)New Brunswick, New Jersey, U.S.CitizenshipUnited StatesUnited Kingdom (Bermuda)[1]Alma materUniversity of California, Santa Barbara (B.A., 1968)OccupationsActorfilm producerYear...

 

Agouti Periode saat ini Dasyprocta Seekor agouti Amerika Tengah sedang menyantap beberapa buahTaksonomiKerajaanAnimaliaFilumChordataKelasMammaliaOrdoRodentiaFamiliDasyproctidaeGenusDasyprocta Bonaparte, 1838 SpeciesSee textlbs Istilah agouti (bahasa Spanyol: agutí, diucapkan [aɣuˈti]) atau common agouti adalah sejumlah spesies hewan pengerat dari genus Dasyprocta. Mereka berasal dari Amerika Tengah, utara dan tengah Amerika Selatan dan selatan Antillen Kecil. Beberapa spesies juga...

For other songs, see Future (disambiguation) § Songs. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: The Future song – news · newspapers · books · scholar · JSTOR (June 2014) (Learn how and when to remove this message) 1990 single by PrinceThe FutureGerman 7-inch singleSingle by Prince[1]...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Let's All Sing with The Chipmunks – news · newspapers · books · scholar · JSTOR (October 2021) (Learn how and when to remove this message) 1959 studio album by Ross Bagdasarian and Alvin and the ChipmunksLet's All Sing with the ChipmunksStudio album by ...

 

Université JagellonneBlason de l'universitéHistoireFondation 1364StatutType Université publiqueNom officiel Uniwersytet JagiellońskiRégime linguistique PolonaisFondateur Casimir IIIRecteur Jacek Popiel (depuis 2020)Devise Plus ratio quam vis (« Plutôt convaincre que vaincre »)Membre de Réseau d'Utrecht, Groupe de Coimbra, EuropaeumSite web (pl + en + ru) www.uj.edu.plChiffres-clésÉtudiants 41 661 (2019)Effectif 7 246 (2019)LocalisationPa...

この項目には、一部のコンピュータや閲覧ソフトで表示できない文字が含まれています(詳細)。 数字の大字(だいじ)は、漢数字の一種。通常用いる単純な字形の漢数字(小字)の代わりに同じ音の別の漢字を用いるものである。 概要 壱万円日本銀行券(「壱」が大字) 弐千円日本銀行券(「弐」が大字) 漢数字には「一」「二」「三」と続く小字と、「壱」「�...

 

Cet article est une ébauche concernant un athlète américain. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Pour les articles homonymes, voir Sheldon. Richard SheldonRichard Sheldon aux JO de 1900.BiographieNaissance 9 juillet 1878RutlandDécès 23 janvier 1935 (à 56 ans)New YorkNationalité américaineFormation Université YaleActivité AthlèteFratrie Lewis SheldonAutres informationsTaille 1,85 mPoid...

 

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)&#...

State bank of Indiana from 1833 to 1859 The New Albany branch building for the Bank of Indiana The state Bank of Indiana was a government chartered banking institution established in 1833 in response to the state's shortage of capital caused by the closure of the Second Bank of the United States by the administration of President Andrew Jackson.[1] The bank operated for twenty-six years and allowed the state to finance its internal improvements, stabilized the state's currency problem...

 

Indian economist, journalist and politician (born 1941) Arun ShourieRMAShourie in 2009Minister of Communications and Information TechnologyIn office29 January 2003 – 22 May 2004Prime MinisterAtal Bihari VajpayeePreceded byPramod MahajanSucceeded byDayanidhi MaranMinister of Commerce & IndustryIn office9 November 2002 – 29 January 2003Prime MinisterAtal Bihari VajpayeePreceded byMurasoli MaranSucceeded byArun JaitleyMinister of Development of North Eastern RegionIn of...

 

غريس براون   معلومات شخصية الميلاد 7 يوليو 1992 (32 سنة)[1]  الجنسية أستراليا  الحياة العملية المهنة دراجة  نوع السباق سباق الدراجات على الطريق  تعديل مصدري - تعديل   غريس براون (بالإنجليزية: Grace Brown)‏ هي دراجة أسترالية، ولدت في 7 يوليو 1992 في Camperdown, Victoria [الإنج�...

BundesligaMusim2016–17Tanggal26 Agustus 2016 – 20 Mei 2017JuaraBayern MünchenGelar Bundesliga ke-26DegradasiFC IngolstadtDarmstadt 98Liga ChampionsBayern MünchenRB LeipzigBorussia Dortmund1899 HoffenheimLiga Eropa1. FC KölnHertha BSCSC FreiburgJumlah pertandingan306Jumlah gol877 (2,87 per pertandingan)Pencetak golterbanyakPierre-Emerick Aubameyang(31 gol)Penjaga gawangterbaikManuel Neuer(14 laga tanpa kebobolan)Kemenangan kandangterbesarBayern München 8–0 Hamburger SVKemenangan...

 

Czech footballer Egon Vůch Personal informationDate of birth (1991-02-01) 1 February 1991 (age 33)Place of birth Plzeň, CzechoslovakiaHeight 1.77 m (5 ft 10 in)Position(s) Right midfielder[1]Team informationCurrent team Jiskra DomažliceNumber 7Senior career*Years Team Apps (Gls)2011–2015 Teplice 88 (8)2015–2017 Viktoria Plzeň 3 (0)2016–2017 → Slovan Liberec (loan) 30 (3)2017–2018 Tobol 12 (3)2018 → Shakhter Karagandy (loan) 23 (2)2019 Příbram 2 (0...