Potassium alum, potash alum, or potassium aluminium sulfate is a chemical compound first mentioned under various Sanskrit names in Ayurvedic medicinal texts such as charak samhita, sushrut samhita, and ashtang hridaya; is chemically defined as the double sulfate of potassium and aluminium, with chemical formula KAl(SO4)2. It is commonly encountered as the dodecahydrate, KAl(SO4)2·12H2O. It crystallizes in an octahedral structure in neutral solution and cubic structure in an alkali solution with space group Pa3 and lattice parameter of 12.18 Å.[4] The compound is the most important member of the generic class of compounds called alums, and is often called simply alum.[5]
Potassium alum was also known to the Ancient Egyptians, who obtained it from evaporites in the Western desert and reportedly used it as early as 1500 BCE to reduce the visible cloudiness (turbidity) in the water.[citation needed]
Mesopotamia
According to the expert on Middle Eastern history of chemistry Martin Levey, potassium alum is one of the few compounds known to the ancients that can be found relatively pure in nature, as well as one of only a few chemicals used in Mesopotamian chemical technology that can be identified with certainty.[10] Both native and imported potassium alum was used.[10] Together with other agents, potassium alum was used in glass-making, tanning, and in the dyeing of cloth, wood, and possibly hair.[10] A tanning process using potassium alum is described in tablets from the first millennium BCE.[10] When Levey wrote his article in 1958, no description of the dyeing process had been found, so it is not known how potassium alum was used in it. In Mesopotamian medicine potassium alum was used extensively, for example against itch, jaundice, some eye condition, and unidentified ailments.[10]
According to Levey, potassium alum was used in "classical times" as a flux when soldering copper, in the fireproofing of wood, and in the separation of silver and gold, but that there is no evidence that these uses existed in Mesopotamia.[10]
Greece
The production of potassium alum from alunite is archaeologically attested on the island Lesbos.[11] This site was abandoned in the 7th century but dates back at least to the 2nd century CE.
Rome
Potassium alum was described under the name alumen or salsugoterrae by Pliny,[12] and it is clearly the same as the stypteria (στυπτηρία) described by Dioscorides.[13] However, the name alum and other names applied to this substance — like misy, sory, chalcanthum, and atramentum sutorium — were often applied to other products with vaguely similar properties or uses, such as iron sulfate or "green vitriol".[14][full citation needed]
India and China
Potassium alum is mentioned in Ayurvedic texts namely Charak Samhita, Sushurta Samhita, and Ashtanga Hridaya with the name such as sphaṭika kṣāra, phitkari or saurashtri. It is used in traditional Chinese medicine with the name mingfan .
Middle Ages
In the 13th and 14th centuries, alum (from alunite) was a major import from Phocaea (Gulf of Smyrna in Byzantium) by Genoans and Venetians (and was a cause of war between Genoa and Venice) and later by Florence. After the fall of Constantinople, alunite (the source of alum) was discovered at Tolfa in the Papal States (1461). The textile dyeing industry in Bruges, and many locations in Italy, and later in England, required alum to stabilize the dyes onto the fabric (make the dyes "fast") and also to brighten the colors.[15][16]
Modern era
England
Potassium alum was imported into England mainly from the Middle East, and, from the late 15th century onwards, the Papal States for hundreds of years. Its use there was as a dye-fixer (mordant) for wool (which was one of England's primary industries, the value of which increased significantly if dyed).[citation needed] These sources were unreliable, however, and there was a push to develop a source in England especially as imports from the Papal States ceased following the excommunication of Henry VIII.[17]
With state financing, attempts were made throughout the 16th century, but without success until the early 17th century. An industry was founded in Yorkshire to process the shale, which contained the key ingredient, aluminium sulfate, and made an important contribution to the Industrial Revolution. One of the oldest historic sites for the production of alum from shale and human urine are the Peak alum works in Ravenscar, North Yorkshire. By the 18th century, the landscape of northeast Yorkshire had been devastated by this process, which involved constructing 100-foot (30 m) stacks of burning shale and fuelling them with firewood continuously for months. The rest of the production process consisted of quarrying, extraction, steeping of shale ash with seaweed in urine, boiling, evaporating, crystallisation, milling and loading into sacks for export. Quarrying ate into the cliffs of the area, the forests were felled for charcoal and the land polluted by sulfuric acid and ash.[18]
Identification of the formula
In the early 1700s, Georg Ernst Stahl claimed that reacting sulfuric acid with limestone produced a sort of alum.[19][20] The error was soon corrected by Johann Pott and Andreas Marggraf, who showed that the precipitate obtained when an alkali is poured into a solution of alum, namely alumina, is quite different from lime and chalk, and is one of the ingredients in common clay.[21][22]
Marggraf also showed that perfect crystals with properties of alum can be obtained by dissolving alumina in sulfuric acid and adding potash or ammonia to the concentrated solution.[23][24] In 1767, Torbern Bergman observed the need for potassium or ammonium sulfates to convert aluminium sulfate into alum, while sodium or calcium would not work.[23][25]
At the time, potassium ("potash") was believed to be exclusively found on plants. However, in 1797, Martin Klaproth discovered the presence of potassium in the minerals leucite and lepidolite.[26][27]
Louis Vauquelin then conjectured that potassium was likewise an ingredient in many other minerals. Given Marggraf and Bergman's experiments, he suspected that this alkali constituted an essential ingredient of natural alum. In 1797 he published a dissertation demonstrating that alum is a double salt, composed of sulfuric acid, alumina, and potash.[28] In the same journal volume, Jean-Antoine Chaptal published the analysis of four different kinds of alum, namely, Roman alum, Levant alum, British alum and alum manufactured by himself,[29] confirming Vauquelin's results.[23]
Characteristics
Potassium alum crystallizes in regular octahedra with flattened corners and is very soluble in water. The solution is slightly acidic and is astringent to the taste. Neutralizing a solution of alum with potassium hydroxide will begin to cause the separation of alumina Al(OH) 3.[citation needed]
When heated to nearly a red heat, it gives a porous, friable mass, which is known as "burnt alum". It fuses at 92 °C (198 °F) in its own water of crystallization.[citation needed]
In order to obtain alum from alunite, it is calcined and then exposed to the action of air for a considerable time. During this exposure it is kept continually moistened with water, so that it ultimately falls to a very fine powder. This powder is then lixiviated with hot water, the liquor decanted, and the alum allowed to crystallize.[citation needed]
Potassium alum historically was mainly extracted from alunite.
Potassium alum is now produced industrially by adding potassium sulfate to a concentrated solution of aluminium sulfate.[33] The aluminium sulfate is usually obtained by treating minerals like alum schist, bauxite and cryolite with sulfuric acid.[34] If much iron should be present in the sulfate then it is preferable to use potassium chloride in place of potassium sulfate.[34]
Styptic pencils are rods composed of potassium alum or aluminum sulfate, used topically to reduce bleeding in minor cuts (especially from shaving) and abrasions, nosebleeds, and hemorrhoids, and to relieve pain from stings and bites.[citation needed] Potassium alum blocks are rubbed over the wet skin after shaving.[8]
Potassium and ammonium alum are the active ingredients in some antiperspirants and deodorants, acting by inhibiting the growth of the bacteria responsible for body odor. Alum's antiperspirant and antibacterial properties[39][40] contribute to its traditional use as an underarm deodorant.[12] It has been used for this purpose in Europe, Mexico, Thailand (where it is called sarn-som), throughout Asia and in the Philippines (where it is called tawas). Today, potassium or ammonium alum is sold commercially for this purpose as a "deodorant crystal".[41][42][7] Beginning in 2005 the US Food and Drug Administration no longer recognized it as a wetness reducer, but it is still available and used in several other countries, primarily in Asia.[citation needed]
Alum may be used in depilatory waxes used for the removal of body hair or applied to freshly waxed skin as a soothing agent.
In the 1950s, men sporting crewcut or flattop hairstyles sometimes applied alum to their hair, as an alternative to pomade, to keep the hair standing up.[citation needed]
Culinary
Potassium alum may be an acidic ingredient of baking powder to provide a second leavening phase at high temperatures (although sodium alum is more commonly used for that purpose).[citation needed] For example, potassium alum is frequently used in leavening of youtiao, a traditional Chinese fried bread, throughout China.[45]
Potassium alum, under the name "alum powder", is found in the spice section of many grocery stores in the US. Its chief culinary use is in pickling recipes, to preserve and add crispness to fruit and vegetables.[49]
Flame retardant
Potassium alum is used as a fire retardant to render cloth, wood, and paper materials less flammable.[33]
Alum has been used since antiquity as mordant to form a permanent bond between dye and natural textile fibers like wool.[51] It is also used for this purpose in paper marbling.[52]
Chemical flocculant
Potassium alum has been used since remote antiquity for purification of turbid liquids.[53] It is still widely used in the purification of water for drinking and industrial processes water, treatment of effluents and post-storm treatment of lakes to precipitate contaminants.[54]
Between 30 and 40 ppm of alum[53][55] for household wastewater, often more for industrial wastewater,[56] is added to the water so that the negatively charged colloidal particles clump together into "flocs", which then float to the top of the liquid, settle to the bottom of the liquid, or can be more easily filtered from the liquid, prior to further filtration and disinfection of the water.[33] Like other similar salts, it works by neutralizing the electrical double layer surrounding very fine suspended particles, allowing them to join into flocs.
Aluminum hydroxide from potassium alum serves as a base for the majority of lake pigments.[57]
Dissolving iron and steel
Alum solution has the property of dissolving steels while not affecting aluminium or base metals. Alum solution can be used to dissolve steel tool bits that have become lodged in machined castings.[58][59]
Alum is an ingredient in some recipes for homemade modeling compounds, often called "play clay" or "play dough", intended for use by children.[citation needed]
Potassium alum was formerly used as a hardener for photographic emulsions (films and papers), usually as part of the fixer. It has now been replaced in that use by other chemicals.
Toxicology and safety
Potassium alum may be a weak irritant to the skin.[60]
^Bottomley, L.; Bottomley, L. A. (2010). Chemistry 1310: Laboratory Manual. Plymouth, Michigan: School of Chemistry & Biochemistry, Georgia Institute of Technology / Hayden-McNeil Publishing. ISBN978-0-7380-3819-3.
^See Henry VII of England trade section. Henry broke the Pope's monopoly by financing shipping bootstrapping a trading system with the Ottoman Empires mines
^A. Archontidou 2005, "Un atelier de preparation de l'alun a partir de l'alunite dans l'isle de Lesbos" in L'alun de Mediterranée. ed P. Borgard et al.
^"Color in Relation to the Political and Economic History of the Western World" by Sidney M Edelstein, Proceedings of the Perkin Centennial, American Association of Textile Chemists and Colorists, September 1956
^"Worldly Goods: A New History of the Renaissance", Lisa Jardine, 1996, Norton&Co, pages 114–116 ISBN978-0393318661
^Martin Heinrich Klaproth (1801), Analytical Essays Towards Promoting the Chemical Knowledge of Mineral Substances. T. Cadell, Jr. & W. Davies, London. His finding of potassium in leucite appears on pp. 353–354.: "On the contrary, I was surprised in an unexpected manner, by discovering in it another constituent part, consisting of a substance, the existence of which, certainly, no one person would have conjectured within the limits of the mineral kingdom .... This constituent part of leucite ... is no other than pot-ash, which, hitherto, has been thought exclusively to belong to the vegetable kingdom, and has, on this account, been called vegetable alkali. ... This discovery, which I think of great importance, cannot fail to occasion considerable changes in the systems of natural history ...". The discovery of potassium in lepidolite is mentioned on p. 472.
^ abcOtto Helmboldt, L. Keith Hudson, Chanakya Misra, Karl Wefers, Wolfgang Heck, Hans Stark, Max Danner, Norbert Rösch "Aluminium Compounds, Inorganic" in Ullmann's Encyclopedia of Industrial Chemistry 2007, Wiley-VCH, Weinheim.doi:10.1002/14356007.a01_527.pub2
^Kennedy, C.; Snell, M. E.; Witherow, R. E. (1984). "Use of Alum to Control Intractable Vesical Haemorrhage". British Journal of Urology. 56 (6): 673–675. doi:10.1111/j.1464-410X.1984.tb06143.x. PMID6534488.
^Aguilar, T. N.; Blaug, S. M.; Zopf, L. C. (July 1956). "A study of the antibacterial activity of some complex aluminum salts". Journal of the American Pharmaceutical Association. 45 (7): 498–500. doi:10.1002/jps.3030450720. PMID13345689.
^US patent 5399364, Francis Verdan, "Cosmetic assembly defined by encased stick of alum", issued 1995-05-21[1]
^Mbow, M. Lamine; De Gregorio, Ennio; Ulmer, Jeffrey B. (2011). "Alum's adjuvant action: Grease is the word". Nature Medicine. 17 (4): 415–416. doi:10.1038/nm0411-415. PMID21475229. S2CID6343632.
^Gallego, H.; Lewis, E. J.; Crutchfield, C. E. III (July 1999). "Crystal deodorant dermatitis: Irritant dermatitis to alum-containing deodorant". Cutis. 64 (1): 65–6. PMID10431678.