Poincaré map

A two-dimensional Poincaré section of the forced Duffing equation

In mathematics, particularly in dynamical systems, a first recurrence map or Poincaré map, named after Henri Poincaré, is the intersection of a periodic orbit in the state space of a continuous dynamical system with a certain lower-dimensional subspace, called the Poincaré section, transversal to the flow of the system. More precisely, one considers a periodic orbit with initial conditions within a section of the space, which leaves that section afterwards, and observes the point at which this orbit first returns to the section. One then creates a map to send the first point to the second, hence the name first recurrence map. The transversality of the Poincaré section means that periodic orbits starting on the subspace flow through it and not parallel to it.

A Poincaré map can be interpreted as a discrete dynamical system with a state space that is one dimension smaller than the original continuous dynamical system. Because it preserves many properties of periodic and quasiperiodic orbits of the original system and has a lower-dimensional state space, it is often used for analyzing the original system in a simpler way.[citation needed] In practice this is not always possible as there is no general method to construct a Poincaré map.

A Poincaré map differs from a recurrence plot in that space, not time, determines when to plot a point. For instance, the locus of the Moon when the Earth is at perihelion is a recurrence plot; the locus of the Moon when it passes through the plane perpendicular to the Earth's orbit and passing through the Sun and the Earth at perihelion is a Poincaré map.[citation needed] It was used by Michel Hénon to study the motion of stars in a galaxy, because the path of a star projected onto a plane looks like a tangled mess, while the Poincaré map shows the structure more clearly.

Definition

In the Poincaré section S, the Poincaré map P projects a point x onto the point P(x).

Let (R, M, φ) be a global dynamical system, with R the real numbers, M the phase space and φ the evolution function. Let γ be a periodic orbit through a point p and S be a local differentiable and transversal section of φ through p, called a Poincaré section through p.

Given an open and connected neighborhood of p, a function

is called Poincaré map for the orbit γ on the Poincaré section S through the point p if

  • P(p) = p
  • P(U) is a neighborhood of p and P:UP(U) is a diffeomorphism
  • for every point x in U, the positive semi-orbit of x intersects S for the first time at P(x)

Example

Consider the following system of differential equations in polar coordinates, :

The flow of the system can be obtained by integrating the equation: for the component we simply have while for the component we need to separate the variables and integrate:

Inverting last expression gives

and since

we find

The flow of the system is therefore

The behaviour of the flow is the following:

  • The angle increases monotonically and at constant rate.
  • The radius tends to the equilibrium for every value.

Therefore, the solution with initial data draws a spiral that tends towards the radius 1 circle.

We can take as Poincaré section for this flow the positive horizontal axis, namely : obviously we can use as coordinate on the section. Every point in returns to the section after a time (this can be understood by looking at the evolution of the angle): we can take as Poincaré map the restriction of to the section computed at the time , . The Poincaré map is therefore :

The behaviour of the orbits of the discrete dynamical system is the following:

  • The point is fixed, so for every .
  • Every other point tends monotonically to the equilibrium, for .

Poincaré maps and stability analysis

Poincaré maps can be interpreted as a discrete dynamical system. The stability of a periodic orbit of the original system is closely related to the stability of the fixed point of the corresponding Poincaré map.

Let (R, M, φ) be a differentiable dynamical system with periodic orbit γ through p. Let

be the corresponding Poincaré map through p. We define

and

then (Z, U, P) is a discrete dynamical system with state space U and evolution function

Per definition this system has a fixed point at p.

The periodic orbit γ of the continuous dynamical system is stable if and only if the fixed point p of the discrete dynamical system is stable.

The periodic orbit γ of the continuous dynamical system is asymptotically stable if and only if the fixed point p of the discrete dynamical system is asymptotically stable.

See also

References

  • Teschl, Gerald. Ordinary Differential Equations and Dynamical Systems. Providence: American Mathematical Society.

Read other articles:

Biara gereja dengan makam kanon katedral. Biara Essen (dalam bahasa Jerman: Stift Essen) adalah biara wanita yang didirikan pada sekitar 845 oleh Altfrid dari Sachsen († 874), kemudian Uskup Hildesheim dan santo, di dekat wilayah kerajaan yang disebut Astnidhi, yang kemudian memberikan namanya ke rumah keagamaan dan kota. Abdis pertamanya adalah kerabat Altfrid bernama Gerswit. Terlepas dari biara, para biarawati tidak bersumpah selibat abadi, dan dapat meninggalkan biara untuk menikah; mer...

 

 

2017 film by Álex de la Iglesia This article consists almost entirely of a plot summary. Please help improve the article by adding more real-world context. (September 2021) (Learn how and when to remove this template message) The BarTheatrical release posterSpanishEl bar Directed byÁlex de la IglesiaWritten by Jorge Guerricaechevarría Álex de la Iglesia Produced by Mikel Lejarza Mercedes Gamero Kiko Martínez Carolina Bang Álex de la Iglesia Starring Blanca Suárez Mario Casas Carmen Mac...

 

 

American sportscaster Curt MenefeeMenefee in 2022Born (1965-07-22) July 22, 1965 (age 58)Atlanta, Georgia, U.S.Alma materCoe College (BA)Northwestern University (MA)OccupationSportscasterKnown forHost of Fox NFL Sunday Curt Menefee (born July 22, 1965) is an American broadcaster who hosts the Fox Network's NFL pregame show Fox NFL Sunday.[1][2] He is also the co-anchor of Good Day New York on Fox's New York City flagship station, WNYW. Early life and education M...

برج ساعة حمص الجديدة أو كما تعرف شعبيا «ساعة كرجية» (بالإنجليزية: Homs new clock tower)‏، هي بناء برجي يحمل في قمته ساعة ميكانيكية كبيرة تتوزع لأربع ساعات مطلة على مختلف الجهات، وأحد معالم حمص الشهيرة ورمز للمدينة أيضاً، يعود تاريخ بناءها إلى ستينات القرن العشرين.[1]برج ساعة حمص...

 

 

Beneficial stress The term eustress means beneficial stress—either psychological, physical (e.g., exercise), or biochemical/radiological (hormesis). The word was introduced by endocrinologist Hans Selye (1907-1982) in 1976;[1] he combined the Greek prefix eu- meaning good, and the English word stress, to give the literal meaning good stress. The Oxford English Dictionary traces early use of the word (in psychological usage) to 1968.[2] Eustress is the positive cognitive resp...

 

 

Questa voce sull'argomento isole della Francia è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Arcipelago delle FrioulArchipel du FrioulVeduta aerea dell'arcipelago.Geografia fisicaLocalizzazioneMar Mediterraneo Coordinate43°16′38″N 5°18′24″E / 43.277222°N 5.306667°E43.277222; 5.306667Coordinate: 43°16′38″N 5°18′24″E / 43.277222°N 5.306667°E43.277222; 5.306667 Superficie0,2 km² Numero isole4 Iso...

This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Marek Kotański – news · newspapers · books · scholar · JSTOR (December 2009) (Learn how and when to remove this template message) Marek Kotański (March 11, 1942 – August 19, 2002) was a Polish charity worker and campaigner on behalf of disadvantaged people, including the hom...

 

 

Dravidian language spoken in southwestern Pakistan and Afghanistan BrahuiبراہوئیThe word Brahui written in the Nastaliq scriptPronunciation[bɾaːhuiː]Native toPakistan, Afghanistan[1]RegionBalochistanEthnicityBrahui and BalochNative speakers(2.8 million cited 1980–2017 Census)[1]Language familyDravidian NorthernBrahuiWriting systemPerso-Arabic Script (Nastaʿlīq),Latin scriptOfficial statusRecognised minoritylanguage in Pakistan  Balochi...

 

 

American baseball player (born 2000) Baseball player Alek ThomasThomas playing for the Diamondbacks in 2023Arizona Diamondbacks – No. 5OutfielderBorn: (2000-04-28) April 28, 2000 (age 24)Tucson, Arizona, U.S.Bats: LeftThrows: LeftMLB debutMay 8, 2022, for the Arizona DiamondbacksMLB statistics (through March 29, 2024)Batting average.232Home runs18Runs batted in82 Teams Arizona Diamondbacks (2022–present) Medals Men's baseball Representing  United States U-18 Baseb...

Marwan Hamadeh Menteri Pendidikan dan Perguruan TinggiMasa jabatan18 Desember 2016 – 31 Januari 2019Perdana MenteriSaad HaririPendahuluElias Bou SaabPenggantiAkram ChehayebMenteri TelekomunikasiMasa jabatan19 Juli 2005 – 11 Juli 2008Perdana MenteriFouad SinioraPendahuluAlan TabourianPenggantiGebran BassilMenteri Ekonomi dan PerdaganganMasa jabatan2003 – September 2004Perdana MenteriRafik HaririPendahuluBassel FleihanPenggantiFouad Siniora (pelaksana tugas) Adn...

 

 

† Египтопитек Реконструкция внешнего вида египтопитека Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:Четвероно...

 

 

Горбунов и Горчаков Жанр поэма Автор Иосиф Бродский Язык оригинала русский Дата написания 1965-1968 Дата первой публикации 1970 «Горбунов и Горчаков» — поэма Иосифа Бродского. Начата в 1965 и завершена в 1968. Поэма целиком состоит из прямой речи: диалогов и монологов; «незакав�...

Mountain Summit, Skagit County of Washington StateSauk MountainSauk Mountain, west aspect  Highest pointElevation5,545 ft (1,690 m)[1]Prominence1,621 ft (494 m)[2]Parent peakMount Watson[1]Isolation8.06 mi (12.97 km)[1]Coordinates48°31′23″N 121°36′04″W / 48.522992°N 121.600986°W / 48.522992; -121.600986[2]NamingNative namedxʷgʷiʔt (Lushootseed)GeographySauk MountainLocat...

 

 

Annual gathering of the British Labour Party The 2016 Labour Party Conference at ACC Liverpool The Labour Party Conference is the annual conference of the British Labour Party. It is formally the supreme decision-making body of the party and is traditionally held in the final week of September, during the party conference season when the House of Commons is in recess, after each year's second Liberal Democrat Conference and before the Conservative Party Conference. The Labour Party Conference...

 

 

It has been suggested that Asperger syndrome be merged into this article. (Discuss) Proposed since May 2024. Range of neurodevelopmental conditions Medical conditionAutismOther names Autism spectrum disorder (ASD),[a] autism spectrum condition (ASC) Formerly: Kanner syndrome/autistic disorder/childhood autism, Asperger syndrome (AS), childhood disintegrative disorder (CDD), pervasive developmental disorder not otherwise specified (PDD-NOS) SpecialtyPsychiatry, clinical psychology, ped...

Film streaming service This article contains content that is written like an advertisement. Please help improve it by removing promotional content and inappropriate external links, and by adding encyclopedic content written from a neutral point of view. (September 2022) (Learn how and when to remove this message) FandorCompany typeSubscription independent film streaming serviceFoundedMarch 2011FounderPhilip HopkinsHeadquartersNew York City, New York, United StatesArea servedUnited States, Can...

 

 

Association football club in London, England Football clubCarshalton AthleticFull nameCarshalton Athletic Football ClubNickname(s)The RobinsFounded1905; 119 years ago (1905)(as Mill Lane Mission)GroundWar Memorial Sports Ground, CarshaltonCapacity5,000 (240 seated)OwnerPaul DipreManagerPeter AdeniyiLeagueIsthmian League Premier Division2023–24Isthmian League Premier Division, 11th of 22WebsiteClub website Home colours Away colours Carshalton Athletic Football Club is an En...

 

 

River in Connecticut, United StatesWhiting RiverCampbell Falls on the Whiting River SourceMouthclass=notpageimage| The Whiting River's source (in Massachusetts) and mouth (in Connecticut)LocationCountryUnited StatesStatesMassachusetts, ConnecticutTownsNew Marlborough, Massachusetts, North Canaan, ConnecticutPhysical characteristicsSourceThousand Acre Swamp • locationNew Marlborough, Massachusetts • coordinates(42°04′00″N 73°12′40″W / ...

Ryan JonesRyan Jones alle celebrazioni del Grande Slam gallese al Sei Nazioni 2012Dati biograficiPaese Regno Unito Altezza196 cm Peso114 kg Rugby a 15 Union Galles RuoloTerza linea centro Franchigia URC Ospreys CarrieraAttività provinciale 2007-08 Swansea1 (0) Attività di club[1] 2002-03 Bridgend2 (0)2003-04 Celtic Warriors15 (5)2004- Ospreys83 (65) Attività da giocatore internazionale 2004-2005- Galles British & Irish Lions73 (10)3 (0) 1. A part...

 

 

For List of elected members of the Provincial Assembly of the Punjab, see List of members of the 17th Provincial Assembly of the Punjab. 2018 Punjab provincial election ← 2013 25 July 2018 2024 → elected members →297 out of 371 seats in the Punjab Assembly[a]186 seats needed for a majorityOpinion pollsTurnout56.44% (1.78%)   First party Second party   Leader Shah Mahmood Qureshi Hamza Shahbaz Party PTI PML(N) Leader's seat Multan-V...