Petrov classification

In differential geometry and theoretical physics, the Petrov classification (also known as Petrov–Pirani–Penrose classification) describes the possible algebraic symmetries of the Weyl tensor at each event in a Lorentzian manifold.

It is most often applied in studying exact solutions of Einstein's field equations, but strictly speaking the classification is a theorem in pure mathematics applying to any Lorentzian manifold, independent of any physical interpretation. The classification was found in 1954 by A. Z. Petrov and independently by Felix Pirani in 1957.

Classification theorem

We can think of a fourth rank tensor such as the Weyl tensor, evaluated at some event, as acting on the space of bivectors at that event like a linear operator acting on a vector space:

Then, it is natural to consider the problem of finding eigenvalues and eigenvectors (which are now referred to as eigenbivectors) such that

In (four-dimensional) Lorentzian spacetimes, there is a six-dimensional space of antisymmetric bivectors at each event. However, the symmetries of the Weyl tensor imply that any eigenbivectors must belong to a four-dimensional subset. Thus, the Weyl tensor (at a given event) can in fact have at most four linearly independent eigenbivectors.


The eigenbivectors of the Weyl tensor can occur with various multiplicities and any multiplicities among the eigenbivectors indicates a kind of algebraic symmetry of the Weyl tensor at the given event. The different types of Weyl tensor (at a given event) can be determined by solving a characteristic equation, in this case a quartic equation. All the above happens similarly to the theory of the eigenvectors of an ordinary linear operator.

These eigenbivectors are associated with certain null vectors in the original spacetime, which are called the principal null directions (at a given event). The relevant multilinear algebra is somewhat involved (see the citations below), but the resulting classification theorem states that there are precisely six possible types of algebraic symmetry. These are known as the Petrov types:

The Penrose diagram showing the possible degenerations of the Petrov type of the Weyl tensor
  • Type I: four simple principal null directions,
  • Type II: one double and two simple principal null directions,
  • Type D: two double principal null directions,
  • Type III: one triple and one simple principal null direction,
  • Type N: one quadruple principal null direction,
  • Type O: the Weyl tensor vanishes.

The possible transitions between Petrov types are shown in the figure, which can also be interpreted as stating that some of the Petrov types are "more special" than others. For example, type I, the most general type, can degenerate to types II or D, while type II can degenerate to types III, N, or D.

Different events in a given spacetime can have different Petrov types. A Weyl tensor that has type I (at some event) is called algebraically general; otherwise, it is called algebraically special (at that event). In General Relativity, type O spacetimes are conformally flat.

Newman–Penrose formalism

The Newman–Penrose formalism is often used in practice for the classification. Consider the following set of bivectors, constructed out of tetrads of null vectors (note that in some notations, symbols l and n are interchanged):

The Weyl tensor can be expressed as a combination of these bivectors through

where the are the Weyl scalars and c.c. is the complex conjugate. The six different Petrov types are distinguished by which of the Weyl scalars vanish. The conditions are

  • Type I  : ,
  • Type II : ,
  • Type D  : ,
  • Type III : ,
  • Type N  : ,
  • Type O  : .

Bel criteria

Given a metric on a Lorentzian manifold , the Weyl tensor for this metric may be computed. If the Weyl tensor is algebraically special at some , there is a useful set of conditions, found by Lluis (or Louis) Bel and Robert Debever,[1] for determining precisely the Petrov type at . Denoting the Weyl tensor components at by (assumed non-zero, i.e., not of type O), the Bel criteria may be stated as:

  • is type N if and only if there exists a vector satisfying

where is necessarily null and unique (up to scaling).

  • If is not type N, then is of type III if and only if there exists a vector satisfying

where is necessarily null and unique (up to scaling).

  • is of type II if and only if there exists a vector satisfying
and ()

where is necessarily null and unique (up to scaling).

  • is of type D if and only if there exists two linearly independent vectors , satisfying the conditions
, ()

and

, ().

where is the dual of the Weyl tensor at .

In fact, for each criterion above, there are equivalent conditions for the Weyl tensor to have that type. These equivalent conditions are stated in terms of the dual and self-dual of the Weyl tensor and certain bivectors and are collected together in Hall (2004).

The Bel criteria find application in general relativity where determining the Petrov type of algebraically special Weyl tensors is accomplished by searching for null vectors.

Physical interpretation

According to general relativity, the various algebraically special Petrov types have some interesting physical interpretations, the classification then sometimes being called the classification of gravitational fields.

Type D regions are associated with the gravitational fields of isolated massive objects, such as stars. More precisely, type D fields occur as the exterior field of a gravitating object which is completely characterized by its mass and angular momentum. (A more general object might have nonzero higher multipole moments.) The two double principal null directions define "radially" ingoing and outgoing null congruences near the object which is the source of the field.

The electrogravitic tensor (or tidal tensor) in a type D region is very closely analogous to the gravitational fields which are described in Newtonian gravity by a Coulomb type gravitational potential. Such a tidal field is characterized by tension in one direction and compression in the orthogonal directions; the eigenvalues have the pattern (-2,1,1). For example, a spacecraft orbiting the Earth experiences a tiny tension along a radius from the center of the Earth, and a tiny compression in the orthogonal directions. Just as in Newtonian gravitation, this tidal field typically decays like , where is the distance from the object.

If the object is rotating about some axis, in addition to the tidal effects, there will be various gravitomagnetic effects, such as spin-spin forces on gyroscopes carried by an observer. In the Kerr vacuum, which is the best known example of type D vacuum solution, this part of the field decays like .

Type III regions are associated with a kind of longitudinal gravitational radiation. In such regions, the tidal forces have a shearing effect. This possibility is often neglected, in part because the gravitational radiation which arises in weak-field theory is type N, and in part because type III radiation decays like , which is faster than type N radiation.

Type N regions are associated with transverse gravitational radiation, which is the type astronomers have detected with LIGO. The quadruple principal null direction corresponds to the wave vector describing the direction of propagation of this radiation. It typically decays like , so the long-range radiation field is type N.

Type II regions combine the effects noted above for types D, III, and N, in a rather complicated nonlinear way.

Type O regions, or conformally flat regions, are associated with places where the Weyl tensor vanishes identically. In this case, the curvature is said to be pure Ricci. In a conformally flat region, any gravitational effects must be due to the immediate presence of matter or the field energy of some nongravitational field (such as an electromagnetic field). In a sense, this means that any distant objects are not exerting any long range influence on events in our region. More precisely, if there are any time varying gravitational fields in distant regions, the news has not yet reached our conformally flat region.

Gravitational radiation emitted from an isolated system will usually not be algebraically special. The peeling theorem describes the way in which, as one moves farther way from the source of the radiation, the various components of the radiation field "peel" off, until finally only type N radiation is noticeable at large distances. This is similar to the electromagnetic peeling theorem.

Examples

In some (more or less) familiar solutions, the Weyl tensor has the same Petrov type at each event:

More generally, any spherically symmetric spacetime must be of type D (or O). All algebraically special spacetimes having various types of stress–energy tensor are known, for example, all the type D vacuum solutions.

Some classes of solutions can be invariantly characterized using algebraic symmetries of the Weyl tensor: for example, the class of non-conformally flat null electrovacuum or null dust solutions admitting an expanding but nontwisting null congruence is precisely the class of Robinson/Trautmann spacetimes. These are usually type II, but include type III and type N examples.

Generalization to higher dimensions

A. Coley, R. Milson, V. Pravda and A. Pravdová (2004) developed a generalization of algebraic classification to arbitrary spacetime dimension . Their approach uses a null frame basis approach, that is a frame basis containing two null vectors and , along with spacelike vectors. Frame basis components of the Weyl tensor are classified by their transformation properties under local Lorentz boosts. If particular Weyl components vanish, then and/or are said to be Weyl-Aligned Null Directions (WANDs). In four dimensions, is a WAND if and only if it is a principal null direction in the sense defined above. This approach gives a natural higher-dimensional extension of each of the various algebraic types II,D etc. defined above.

An alternative, but inequivalent, generalization was previously defined by de Smet (2002), based on a spinorial approach. However, de Smet's approach is restricted to 5 dimensions only.

See also

References

  1. ^ Ortaggio, Marcello (2009). "Bel–Debever criteria for the classification of the Weyl tensor in higher dimensions". Classical and Quantum Gravity. arXiv:0906.3818. doi:10.1088/0264-9381/26/19/195015.

Read other articles:

Chronologies Données clés 2009 2010 2011  2012  2013 2014 2015Décennies :1980 1990 2000  2010  2020 2030 2040Siècles :XIXe XXe  XXIe  XXIIe XXIIIeMillénaires :Ier IIe  IIIe  Chronologies géographiques Afrique Afrique du Sud, Algérie, Angola, Bénin, Botswana, Burkina Faso, Burundi, Cameroun, Cap-Vert, République centrafricaine, Comores, République du Congo, République démocratique du Congo, Côte d'Ivoire, Djibouti, Égypte, �...

 

Bollwillercomune Bollwiller – Veduta LocalizzazioneStato Francia RegioneGrand Est Dipartimento Alto Reno ArrondissementGuebwiller CantoneWittenheim TerritorioCoordinate47°52′N 7°15′E / 47.866667°N 7.25°E47.866667; 7.25 (Bollwiller)Coordinate: 47°52′N 7°15′E / 47.866667°N 7.25°E47.866667; 7.25 (Bollwiller) Superficie8,63 km² Abitanti3 609[1] (2009) Densità418,19 ab./km² Altre informazioniCod. postale68540 Fuso...

 

Former radar station in Lincoln County, Montana Yaak Air Force StationPart of Pine Tree Line[1]Located atHensley Hill[2] in Lincoln County, Montana;[1] 25.1 miles (40.4 km) west of Rexford (eponym: the nearby Town of Yaak) Coordinates48°51′44″N 115°43′18″W / 48.86222°N 115.72167°W / 48.86222; -115.72167 (Yaak AFS P-11)[3]TypeAir Force StationSite informationControlled byAir Defense CommandConditiondemolished...

Cortandonecomune Cortandone – VedutaPanorama LocalizzazioneStato Italia Regione Piemonte Provincia Asti AmministrazioneSindacoClaudio Stroppiana (lista civica Noi per Cortandone) dall'8-6-2009 (3º mandato dal 26-5-2019) TerritorioCoordinate44°57′36″N 8°03′34″E / 44.96°N 8.059444°E44.96; 8.059444 (Cortandone)Coordinate: 44°57′36″N 8°03′34″E / 44.96°N 8.059444°E44.96; 8.059444 (Cortandone) Altitudine21...

 

Pesta Olahraga Difabel Asia Tenggara XIITuan rumahPhnom PenhMotoSports Live in PeaceJumlah negara11Jumlah atlet1453Jumlah disiplin439 acara dalam 12 cabang olahragaUpacara pembukaan3 JuniUpacara penutupan9 JuniDibuka olehHun SenPerdana Menteri KambojaPenyalaan oborSinet AnTempat utamaStadion Nasional Morodok TechoSitus webhttps://www.cambodia2023.com← Surakarta 2022 Nakhon Ratchasima 2026 → Pesta Olahraga Difabel Asia Tenggara 2023, yang secara resmi dikenal sebagai bahasa Inggris...

 

Сибирский горный козёл Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:СинапсидыКла�...

Grand Prix Belgia 2011 Lomba ke-12 dari 19 dalam Formula Satu musim 2011← Lomba sebelumnyaLomba berikutnya → Tata letak sirkuit Spa-Francorchamps.Detail perlombaan[1]Tanggal 28 Agustus 2011Nama resmi 2011 Formula 1 Shell Belgian Grand Prix[2]Lokasi Sirkuit Spa-Francorchamps, Francorchamps, Wallonia, BelgiaSirkuit Fasilitas balapan permanenPanjang sirkuit 7.004 km (4.352 mi)Jarak tempuh 44 putaran, 308.052 km (191.415 mi)Cuaca Berawan, keringPosisi poleP...

 

2020年夏季奥林匹克运动会马来西亚代表團马来西亚国旗IOC編碼MASNOC马来西亚奥林匹克理事会網站olympic.org.my(英文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員30參賽項目10个大项旗手开幕式:李梓嘉和吳柳螢(羽毛球)[1][2]閉幕式:潘德莉拉(跳水)[3]獎牌榜排名第74 金牌 銀牌 銅�...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (ديسمبر 2017) منظمة الاتحاد العام للمرأة السورية البلد سوريا  تعديل مصدري - تعديل   منظمة الاتحاد العام للمرأة السورية، هي منظمه غير ممولة من الحكومة السورية ولكنها ...

اقتصاد أيرلندا الشماليةعامالدولة المملكة المتحدة عملة جنيه إسترليني الإحصائياتنصيب الفرد من الناتج الإجمالي 23700 دولار أمريكي[1](2015) تعديل - تعديل مصدري - تعديل ويكي بيانات بلفاست يُعدّ اقتصاد أيرلندا الشمالية الأصغر بين الدول الأربعة للمملكة المتحدة. في السابق كانت أي...

 

Cristóbal López RomeroS.D.B.Uskup Agung RabatGerejaGereja KatolikKeuskupan agungRabatTakhtaRabatPenunjukan29 Desember 2017Awal masa jabatan10 Maret 2018PendahuluVincent Louis Marie LandelJabatan lainAdministrator Apostolik Tanger (2019-)Kardinal-Imam San Leone I (2019-)ImamatTahbisan imam19 Mei 1979oleh Narciso Jubany ArnauTahbisan uskup10 Maret 2018oleh Juan José OmellaPelantikan kardinal5 Oktober 2019oleh Paus FransiskusPeringkatKardinal-ImamInformasi pribadiNama lahirCristóba...

 

Double-walled sac containing the heart and roots of the great vessels For the Traditional Chinese medicine description, see Pericardium (Chinese medicine). Pericard redirects here. For the footballer, see Vincent Pericard. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Pericardium – news · newspapers · books · sc...

City in West Virginia, United StatesMadisonCityMain Street in Madison in 2007Nickname: The Gateway to the Coal FieldsLocation of Madison in Boone County, West Virginia.Coordinates: 38°3′43″N 81°49′6″W / 38.06194°N 81.81833°W / 38.06194; -81.81833CountryUnited StatesStateWest VirginiaCountyBooneArea[1] • Total7.06 sq mi (18.29 km2) • Land7.01 sq mi (18.14 km2) • Water0.06 sq...

 

County-level & Sub-prefectural city in Hubei, People's Republic of ChinaQianjiang 潜江市Tsienkiang, Ch’ien-chiangCounty-level & Sub-prefectural cityLocation of Qianjiang City jurisdiction in HubeiQianjiangLocation of the city centre in HubeiCoordinates (Qianjiang government): 30°24′07″N 112°54′01″E / 30.4019°N 112.9003°E / 30.4019; 112.9003CountryPeople's Republic of ChinaProvinceHubeiArea • County-level & Sub-prefectural ci...

 

مادس هيرمانسن   معلومات شخصية الميلاد 11 يوليو 2000 (العمر 24 سنة)أودنسه  الطول 1.85 م (6 قدم 1 بوصة) مركز اللعب حارس مرمى الجنسية الدنمارك  معلومات النادي النادي الحالي بروندبي الرقم 1 مسيرة الشباب سنوات فريق Næsby Boldklub [الإنجليزية]‏ 2015–2019 بروندبي المسيرة الاحت�...

United States Marine Corps officer and writer (1875–1936) George Cyrus ThorpeThorpe aboard the USS Tennessee, c. 1909Born(1875-01-07)January 7, 1875Northfield, Minnesota, U.S.DiedJuly 28, 1936(1936-07-28) (aged 61)Bethesda, Maryland, U.S.Place of burialArlington National CemeteryAllegianceUnited StatesService/branchUnited States Marine CorpsYears of service1898–1923RankColonelUnit1917–1918, Chief of Staff, 2nd Marine BrigadeCommands held 1903, Marine guard for U.S. diplo...

 

Untuk penari balet Kanada, lihat Lois Smith (penari). Lois SmithSmith pada 1955LahirLois Arlene Humbert03 November 1930 (umur 93)Topeka, Kansas, ASAlmamaterUniversitas Washington (keluar)PekerjaanPemeranTahun aktif1952–sekarangSuami/istriWesley Smith ​ ​(m. 1948; bercerai 1970)​Anak1 Penghargaan(2006) Lucille Lortel Award for Outstanding Lead Actress (en) (2006) Drama Desk Award for Outstanding Actress in a Play (en) (1970) Aktris Pe...

 

第三十二届夏季奥林匹克运动会女子10公里马拉松游泳比賽奖牌得主比賽場館御台場海濱公園日期2021年8月4日参赛选手25位選手,來自23個國家和地區冠军成绩1:59:30.8奖牌获得者01 ! 安娜·玛赛拉·库尼亚  巴西02 ! 莎龙·范劳文达尔  荷兰03 ! 卡里娜·李  澳大利亚← 20162024 → 2020年夏季奥林匹克运动会游泳比赛自由泳50米男子女子100米男子女子200...

Die hier wiedergegebene Systematik der Bakterien gilt in der Wikipedia als Referenz; dies betrifft insbesondere die Einträge in Taxoboxen. Staphylococcus aureus (nachträglich kolorierte REM-Aufnahme) Die taxonomische Aufteilung der Bakterien und Archaeen ist umstritten. Anfangs nur durch Aussehen und Physiologie klassifiziert, wird heute aufgrund neuer Möglichkeiten allgemein die Einteilung mittels phylogenetischer Analyse akzeptiert, wie es Carl Woese (1977, 1990) vorgeschlagen hat.[...

 

Questa voce o sezione sull'argomento Competizioni calcistiche non è ancora formattata secondo gli standard. Commento: Si invita a seguire il modello di voce Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. First Division 1994-1995 Competizione First Division Sport Calcio Edizione 92ª Organizzatore Federazione calcistica dell'Inghilterra Date dal 1994 Luogo  Inghilterra Partecipanti 24 Formula 1 girone all'italia...