There are two unique pentellations of the 8-simplex. Including truncations, cantellations, runcinations, and sterications, there are 32 more pentellations. These polytopes are a part of a family 135 uniform 8-polytopes with A8 symmetry. A8, [37] has order 9 factorial symmetry, or 362880. The bipentalled form is symmetrically ringed, doubling the symmetry order to 725760, and is represented the double-bracketed group [[37]]. The A8Coxeter plane projection shows order [9] symmetry for the pentellated 8-simplex, while the bipentellated 8-simple is doubled to [18] symmetry.
The Cartesian coordinates of the vertices of the pentellated 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,0,1,1,1,1,2). This construction is based on facets of the pentellated 9-orthoplex.
The Cartesian coordinates of the vertices of the bipentellated 8-simplex can be most simply positioned in 9-space as permutations of (0,0,1,1,1,1,1,2,2). This construction is based on facets of the bipentellated 9-orthoplex.
H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN978-0-471-01003-6[1]
(Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
(Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
(Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]