Particular values of the Riemann zeta function

In mathematics, the Riemann zeta function is a function in complex analysis, which is also important in number theory. It is often denoted and is named after the mathematician Bernhard Riemann. When the argument is a real number greater than one, the zeta function satisfies the equation It can therefore provide the sum of various convergent infinite series, such as Explicit or numerically efficient formulae exist for at integer arguments, all of which have real values, including this example. This article lists these formulae, together with tables of values. It also includes derivatives and some series composed of the zeta function at integer arguments.

The same equation in above also holds when is a complex number whose real part is greater than one, ensuring that the infinite sum still converges. The zeta function can then be extended to the whole of the complex plane by analytic continuation, except for a simple pole at . The complex derivative exists in this more general region, making the zeta function a meromorphic function. The above equation no longer applies for these extended values of , for which the corresponding summation would diverge. For example, the full zeta function exists at (and is therefore finite there), but the corresponding series would be whose partial sums would grow indefinitely large.

The zeta function values listed below include function values at the negative even numbers (s = −2, −4, etc.), for which ζ(s) = 0 and which make up the so-called trivial zeros. The Riemann zeta function article includes a colour plot illustrating how the function varies over a continuous rectangular region of the complex plane. The successful characterisation of its non-trivial zeros in the wider plane is important in number theory, because of the Riemann hypothesis.

The Riemann zeta function at 0 and 1

At zero, one has

At 1 there is a pole, so ζ(1) is not finite but the left and right limits are: Since it is a pole of first order, it has a complex residue

Positive integers

Even positive integers

For the even positive integers , one has the relationship to the Bernoulli numbers :

The computation of is known as the Basel problem. The value of is related to the Stefan–Boltzmann law and Wien approximation in physics. The first few values are given by:

Taking the limit , one obtains .

Selected values for even integers
Value Decimal expansion Source
1.6449340668482264364... OEISA013661
1.0823232337111381915... OEISA013662
1.0173430619844491397... OEISA013664
1.0040773561979443393... OEISA013666
1.0009945751278180853... OEISA013668
1.0002460865533080482... OEISA013670
1.0000612481350587048... OEISA013672
1.0000152822594086518... OEISA013674

The relationship between zeta at the positive even integers and the Bernoulli numbers may be written as

where and are integers for all even . These are given by the integer sequences OEISA002432 and OEISA046988, respectively, in OEIS. Some of these values are reproduced below:

coefficients
n A B
1 6 1
2 90 1
3 945 1
4 9450 1
5 93555 1
6 638512875 691
7 18243225 2
8 325641566250 3617
9 38979295480125 43867
10 1531329465290625 174611
11 13447856940643125 155366
12 201919571963756521875 236364091
13 11094481976030578125 1315862
14 564653660170076273671875 6785560294
15 5660878804669082674070015625 6892673020804
16 62490220571022341207266406250 7709321041217
17 12130454581433748587292890625 151628697551

If we let be the coefficient of as above, then we find recursively,

This recurrence relation may be derived from that for the Bernoulli numbers.

Also, there is another recurrence:

which can be proved, using that

The values of the zeta function at non-negative even integers have the generating function: Since The formula also shows that for ,

Odd positive integers

The sum of the harmonic series is infinite.

The value ζ(3) is also known as Apéry's constant and has a role in the electron's gyromagnetic ratio. The value ζ(3) also appears in Planck's law. These and additional values are:

Selected values for odd integers
Value Decimal expansion Source
1.2020569031595942853... OEISA02117
1.0369277551433699263... OEISA013663
1.0083492773819228268... OEISA013665
1.0020083928260822144... OEISA013667
1.0004941886041194645... OEISA013669
1.0001227133475784891... OEISA013671
1.0000305882363070204... OEISA013673

It is known that ζ(3) is irrational (Apéry's theorem) and that infinitely many of the numbers ζ(2n + 1) : n , are irrational.[1] There are also results on the irrationality of values of the Riemann zeta function at the elements of certain subsets of the positive odd integers; for example, at least one of ζ(5), ζ(7), ζ(9), or ζ(11) is irrational.[2]

The positive odd integers of the zeta function appear in physics, specifically correlation functions of antiferromagnetic XXX spin chain.[3]

Most of the identities following below are provided by Simon Plouffe. They are notable in that they converge quite rapidly, giving almost three digits of precision per iteration, and are thus useful for high-precision calculations.

Plouffe stated the following identities without proof.[4] Proofs were later given by other authors.[5]

ζ(5)

ζ(7)

Note that the sum is in the form of a Lambert series.

ζ(2n + 1)

By defining the quantities

a series of relationships can be given in the form

where An, Bn, Cn and Dn are positive integers. Plouffe gives a table of values:

coefficients
n A B C D
3 180 7 360 0
5 1470 5 3024 84
7 56700 19 113400 0
9 18523890 625 37122624 74844
11 425675250 1453 851350500 0
13 257432175 89 514926720 62370
15 390769879500 13687 781539759000 0
17 1904417007743250 6758333 3808863131673600 29116187100
19 21438612514068750 7708537 42877225028137500 0
21 1881063815762259253125 68529640373 3762129424572110592000 1793047592085750

These integer constants may be expressed as sums over Bernoulli numbers, as given in (Vepstas, 2006) below.

A fast algorithm for the calculation of Riemann's zeta function for any integer argument is given by E. A. Karatsuba.[6][7][8]

Negative integers

In general, for negative integers (and also zero), one has

The so-called "trivial zeros" occur at the negative even integers:

(Ramanujan summation)

The first few values for negative odd integers are

However, just like the Bernoulli numbers, these do not stay small for increasingly negative odd values. For details on the first value, see 1 + 2 + 3 + 4 + · · ·.

So ζ(m) can be used as the definition of all (including those for index 0 and 1) Bernoulli numbers.

Derivatives

The derivative of the zeta function at the negative even integers is given by

The first few values of which are

One also has

where A is the Glaisher–Kinkelin constant. The first of these identities implies that the regularized product of the reciprocals of the positive integers is , thus the amusing "equation" .[9]

From the logarithmic derivative of the functional equation,

Selected derivatives
Value Decimal expansion Source
−0.19812624288563685333... OEISA244115
−0.93754825431584375370... OEISA073002
−0.91893853320467274178... OEISA075700
−0.36085433959994760734... OEISA271854
−0.16542114370045092921... OEISA084448
−0.030448457058393270780... OEISA240966
+0.0053785763577743011444... OEISA259068
+0.0079838114502686242806... OEISA259069
−0.00057298598019863520499... OEISA259070
−0.0058997591435159374506... OEISA259071
−0.00072864268015924065246... OEISA259072
+0.0083161619856022473595... OEISA259073

Series involving ζ(n)

The following sums can be derived from the generating function: where ψ0 is the digamma function.

Series related to the Euler–Mascheroni constant (denoted by γ) are

and using the principal value which of course affects only the value at 1, these formulae can be stated as

and show that they depend on the principal value of ζ(1) = γ .

Nontrivial zeros

Zeros of the Riemann zeta except negative even integers are called "nontrivial zeros". The Riemann hypothesis states that the real part of every nontrivial zero must be 1/2. In other words, all known nontrivial zeros of the Riemann zeta are of the form z = 1/2 + yi where y is a real number. The following table contains the decimal expansion of Im(z) for the first few nontrivial zeros:

Selected nontrivial zeros
Decimal expansion of Im(z) Source
14.134725141734693790... OEISA058303
21.022039638771554992... OEISA065434
25.010857580145688763... OEISA065452
30.424876125859513210... OEISA065453
32.935061587739189690... OEISA192492
37.586178158825671257... OEISA305741
40.918719012147495187... OEISA305742
43.327073280914999519... OEISA305743
48.005150881167159727... OEISA305744
49.773832477672302181... OEISA306004

Andrew Odlyzko computed the first 2 million nontrivial zeros accurate to within 4×10−9, and the first 100 zeros accurate within 1000 decimal places. See their website for the tables and bibliographies.[10][11] A table of about 103 billion zeros with high precision (of ±2-102≈±2·10-31) is available for interactive access and download (although in a very inconvenient compressed format) via LMFDB.[12]

Ratios

Although evaluating particular values of the zeta function is difficult, often certain ratios can be found by inserting particular values of the gamma function into the functional equation

We have simple relations for half-integer arguments

Other examples follow for more complicated evaluations and relations of the gamma function. For example a consequence of the relation

is the zeta ratio relation

where AGM is the arithmetic–geometric mean. In a similar vein, it is possible to form radical relations, such as from

the analogous zeta relation is

References

  1. ^ Rivoal, T. (2000). "La fonction zeta de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs". Comptes Rendus de l'Académie des Sciences, Série I. 331 (4): 267–270. arXiv:math/0008051. Bibcode:2000CRASM.331..267R. doi:10.1016/S0764-4442(00)01624-4. S2CID 119678120.
  2. ^ W. Zudilin (2001). "One of the numbers ζ(5), ζ(7), ζ(9), ζ(11) is irrational". Russ. Math. Surv. 56 (4): 774–776. Bibcode:2001RuMaS..56..774Z. doi:10.1070/rm2001v056n04abeh000427. S2CID 250734661.
  3. ^ Boos, H.E.; Korepin, V.E.; Nishiyama, Y.; Shiroishi, M. (2002). "Quantum correlations and number theory". J. Phys. A. 35 (20): 4443–4452. arXiv:cond-mat/0202346. Bibcode:2002JPhA...35.4443B. doi:10.1088/0305-4470/35/20/305. S2CID 119143600..
  4. ^ "Identities for Zeta(2*n+1)".
  5. ^ "Formulas for Odd Zeta Values and Powers of Pi".
  6. ^ Karatsuba, E. A. (1995). "Fast calculation of the Riemann zeta function ζ(s) for integer values of the argument s". Probl. Perdachi Inf. 31 (4): 69–80. MR 1367927.
  7. ^ E. A. Karatsuba: Fast computation of the Riemann zeta function for integer argument. Dokl. Math. Vol.54, No.1, p. 626 (1996).
  8. ^ E. A. Karatsuba: Fast evaluation of ζ(3). Probl. Inf. Transm. Vol.29, No.1, pp. 58–62 (1993).
  9. ^ Muñoz García, E.; Pérez Marco, R. (2008), "The Product Over All Primes is ", Commun. Math. Phys. (277): 69–81.
  10. ^ Odlyzko, Andrew. "Tables of zeros of the Riemann zeta function". Retrieved 7 September 2022.
  11. ^ Odlyzko, Andrew. "Papers on Zeros of the Riemann Zeta Function and Related Topics". Retrieved 7 September 2022.
  12. ^ LMFDB: Zeros of ζ(s)

Further reading

Read other articles:

I'm DifferentLagu oleh Hi SuhyunDirilis11 November 2014 (2014-11-11)FormatUnduhan digitalDirekam2014Genre K-pop R&B[1] Durasi3:34Label YG Entertainment KT Music Pencipta PK Rebecca Johnson Masta Wu Bobby Video musikI'm Different di YouTube Templat:Korean membutuhkan parameter |hangul=. I'm Different (Hangul: 나는 달라; RR: Naneun Dalla) adalah singel debut dari unit duo Hi Suhyun yang terdiri dari penyanyi solo Lee Hi dan Lee Suhyun dari Akd...

 

 

本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目需要补充更多来源。 (2018年3月17日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的标题(来源搜索:羅生門 (電影) — 网页、新闻、书籍、学术、图像),以检查网络上是否存在该主题的更多可靠来源(判定指引)。 �...

 

 

Antonio da Correggio, Pengkhianatan Yesus, dengan seorang prajurit hendak menangkap Markus Penginjil, s. 1522 Orang telanjang yang mengikuti (atau orang telanjang yang lari atau orang muda yang telanjang) adalah seorang figur tak teridentifikasi yang disebutkan secara singkat dalam Injil Markus, tak lama setelah penangkapan Yesus di Taman Getsemani dan melarikan diri bersama dengan para murid: Ada seorang muda, yang pada waktu itu hanya memakai sehelai kain lenan untuk menutup badannya, mengi...

Federação Mineira de FutebolFormation5 March 1915; 109 years ago (1915-03-05)TypeList of international sport federationsHeadquartersBelo Horizonte, MG,  BrazilOfficial language PortuguesePresidentPaulo SchettinoWebsitefmf.com.br The Federação Mineira de Futebol (English: Football Association of Minas Gerais state) is the entity that controls football practice in the state of Minas Gerais, and represents the clubs at the Brazilian Football Confederation (CBF). It org...

 

 

Peter Madsen. Peter Langkjær Madsen[1] (bahasa Denmark: [ˈpeːˀdɐ ˈlɑŋkæɐ̯ ˈmæsn̩]; lahir 12 Januari 1971) adalah seorang mantan wiraswasta dan insinyur otodidak Denmark .[2][3] Ia merupakan salah satu pendiri organisasi nirlaba Copenhagen Suborbitals, tetapi keluar pada tahun 2014[4] dan lalu menjadi pendiri dan CEO RML Spacelab ApS. Pada April 2018, Madsen dinyatakan bersalah atas pembunuhan wartawati Swedia, Kim Wall, di dalam kapal selamny...

 

 

Abnormal closure or absence of the vagina Vaginal atresia is a condition in which the vagina is abnormally closed or absent. The main causes can either be complete vaginal hypoplasia, or a vaginal obstruction, often caused by an imperforate hymen or, less commonly, a transverse vaginal septum.[1][failed verification] It results in uterovaginal outflow tract obstruction. This condition does not usually occur by itself within an individual, but coupled with other developmental d...

Francesco MontenegroKardinal, Uskup Agung AgrigentoMontenegro pada tahun 2015.GerejaGereja Katolik RomaKeuskupan agungAgrigentoTakhtaAgrigentoMasa jabatan23 Februari 2008 - sekarangPendahuluCarmelo FerraroJabatan lainKardinal-Imam Santi Andrea a Gregorio al Monte CelioImamatTahbisan imam8 Agustus 1969oleh Francesco FasolaTahbisan uskup18 Maret 2000oleh Giovanni MarraPelantikan kardinal14 Februari 2015oleh Paus FransiskusPeringkatKardinal-ImamInformasi pribadiLahir22 Mei 1946 (umur&#...

 

 

La rilevanza enciclopedica di questa voce o sezione sull'argomento America è stata messa in dubbio. Motivo: Piccolo villaggio messicano del tutto al di fuori di WP:LUOGHI e che non pare avere nessun particolare motivo di rilevanza Puoi aiutare aggiungendo informazioni verificabili e non evasive sulla rilevanza, citando fonti attendibili di terze parti e partecipando alla discussione. Se ritieni la voce non enciclopedica, puoi proporne la cancellazione. Segui i suggerimenti del progetto...

 

 

Molecular geometry with one atom at the apex and three atoms at the corners of a trigonal base Trigonal pyramidal molecular geometryExamplesNH3Point groupC3vCoordination number3Bond angle(s)90°<θ<109.5°μ (Polarity)>0 In chemistry, a trigonal pyramid is a molecular geometry with one atom at the apex and three atoms at the corners of a trigonal base, resembling a tetrahedron (not to be confused with the tetrahedral geometry). When all three atoms at the corners are identical, the m...

Masjid SalmanInstitut Teknologi BandungFasad depan Masjid Salman Institut Teknologi BandungAgamaAfiliasiIslamCabang/tradisiSunniProvinsiJawa BaratBadan pengelolaYayasan Pembina Masjid Salman ITBLokasiLokasiBandungNegaraIndonesiaArsitekturArsitekAchmad Noe'manTipeMasjidGaya arsitekturModernPeletakan batu pertama1963[1]Rampung1972SpesifikasiArah fasadTimurKapasitas1000-1500 orang[2]Menara1Situs websalmanitb.com Masjid Salman Institut Teknologi Bandung, lebih dikenal sebagai Masj...

 

 

Grand Prix IndiaSirkuit Internasional BuddhInformasi lombaJumlah gelaran3Pertama digelar2011Terakhir digelar2013Terbanyak menang (pembalap) Sebastian Vettel (3)Terbanyak menang (konstruktor) Red Bull Racing (3)Panjang sirkuit5.125 km (3.185 mi)Jarak tempuh307.249 km (190.916 mi)Lap60Balapan terakhir (2013)Pole position S. VettelRed Bull Racing-Renault1:24.119Podium 1. S. VettelRed Bull Racing-Renault1:31:12.187 2. N. RosbergMercedes+29.823 3. R. GrosjeanLotus-Renault+39.8...

 

 

乔冠华 中华人民共和国外交部部长 中国人民对外友好协会顾问 任期1974年11月—1976年12月总理周恩来 → 华国锋前任姬鹏飞继任黄华 个人资料性别男出生(1913-03-28)1913年3月28日 中華民國江蘇省盐城县逝世1983年9月22日(1983歲—09—22)(70歲) 中华人民共和国北京市籍贯江蘇鹽城国籍 中华人民共和国政党 中国共产党配偶明仁(1940年病逝) 龚澎(1970年病逝) 章含�...

14th National People's Congress 14th National People's Congress第十四届全国人民代表大会← 13th15th →National Emblem of the People's Republic of China5 March 2023(1 year, 105 days) – OverviewTypeSupreme organ of state powerElectionNational electionsLeadershipChairmanZhao LejiVice ChairmenLi Hongzhong, Wang Dongming, Xiao Jie, Zheng Jianbang, Ding Zhongli, Hao Mingjin, Cai Dafeng, He Wei, Wu Weihua, Tie Ning, Peng Qinghua, Zhang Qingwei, Losang ...

 

 

Azerbaijani singer (born 1980) Samir Javadzadeh with a female dancer at Eurovision Song Contest 2008 in Belgrade. Samir Javadzadeh (Azerbaijani: Samir Cavadzadə pron. [sɑˈmiɾ dʒɑvɑdzɑˈdæ]; born 16 April 1980, Baku, Azerbaijan) is an Azerbaijani pop singer. He was selected as the Azerbaijani representative, along with Elnur Hüseynov, to perform at the Eurovision Song Contest 2008. They performed Day After Day finishing 8th overall. Career Samir Javadzadeh graduated from the ...

 

 

Abu Bakar Bupati Bandung Barat ke-1Masa jabatan17 Juli 2008 – 19 April 2018PresidenSusilo Bambang YudhoyonoJoko WidodoGubernurAhmad HeryawanWakilErnawan Natasaputra (2008–13) Yayat T. Soemitra (2013–18)PendahuluTjatja Kuswara (Pj.)PenggantiYayat T. Soemitra (Plt.)Dadang M. Masoem (Plt.)Aa Umbara Sutisna Informasi pribadiLahirAbu Bakar9 Desember 1952 Bandung Barat, Jawa Barat, IndonesiaMeninggal13 Juli 2019(2019-07-13) (umur 66)[1] Bandung, Jawa Barat, Indonesia...

The Flaming LipsI Flaming Lips dal vivo al Lollapalooza 2006 Paese d'origine Stati Uniti GenereNeopsichedelia[1][2][3][4]Pop psichedelico[5][6][7][8]Rock psichedelico[1][2][3][9] Periodo di attività musicale1983 – in attività EtichettaRestless RecordsWarner Bros. Records Album pubblicati26 Studio18 Raccolte8 Sito ufficiale Modifica dati su Wikidata · Manuale The Fl...

 

 

Eclectic architectural style and movement during the mid-late 19th century Not to be confused with Victorian Gothic. St Pancras railway station by Sir Gilbert Scott High Victorian Gothic was an eclectic architectural style and movement during the mid-late 19th century.[1] It is seen by architectural historians as either a sub-style of the broader Gothic Revival style, or a separate style in its own right.[2] Promoted and derived from the works of the architect and theorist Joh...

 

 

Keypad of The Reading Edge,[1] a precursor of the K-NFB Reader The K-NFB Reader (an acronym for Kurzweil — National Federation of the Blind Reader) is a handheld electronic reading device for the blind. It was developed in a partnership between Ray Kurzweil and the National Federation of the Blind. The original version of the reader was composed of a digital camera and a PDA, which contained specialised OCR software and speech synthesizers to read the scanned material aloud. It was ...

وفاة مارلين مونرو الصفحة الأولى من جريدة نيويورك ميرور يوم السادس من آب/أغسطس 1962 المكان لوس أنجلوس، كاليفورنيا البلد  الولايات المتحدة التاريخ 4 – 5 آب/أغسطس 1962 تعرف أيضا مقتل مارلين مونرو السبب جرعة زائدة من الباربيتورات الإحداثيات 34°03′13″N 118°28′41″W / 34.0535°N 118.4...

 

 

ネッズ・アトミック・ダストビンNed's Atomic Dustbin ネッズ・アトミック・ダストビン(2012年)基本情報出身地 イングランド ストールブリッジジャンル オルタナティヴ・ロック、ポップ・ロック、グレボ、インディー・パンク活動期間 1987年 - 1995年、2000年 -レーベル Furtive、ソニー、コロムビア、Spitfirepink公式サイト www.nedsatomicdustbin.comメンバー ジョン・ペニーラットア�...