Apéry's theorem

In mathematics, Apéry's theorem is a result in number theory that states the Apéry's constant ζ(3) is irrational. That is, the number

cannot be written as a fraction where p and q are integers. The theorem is named after Roger Apéry.

The special values of the Riemann zeta function at even integers () can be shown in terms of Bernoulli numbers to be irrational, while it remains open whether the function's values are in general rational or not at the odd integers () (though they are conjectured to be irrational).

History

Leonhard Euler proved that if n is a positive integer then

for some rational number . Specifically, writing the infinite series on the left as , he showed

where the are the rational Bernoulli numbers. Once it was proved that is always irrational, this showed that is irrational for all positive integers n.

No such representation in terms of π is known for the so-called zeta constants for odd arguments, the values for positive integers n. It has been conjectured that the ratios of these quantities

are transcendental for every integer .[1]

Because of this, no proof could be found to show that the zeta constants with odd arguments were irrational, even though they were (and still are) all believed to be transcendental. However, in June 1978, Roger Apéry gave a talk titled "Sur l'irrationalité de ζ(3)." During the course of the talk he outlined proofs that and were irrational, the latter using methods simplified from those used to tackle the former rather than relying on the expression in terms of π. Due to the wholly unexpected nature of the proof and Apéry's blasé and very sketchy approach to the subject, many of the mathematicians in the audience dismissed the proof as flawed. However Henri Cohen, Hendrik Lenstra, and Alfred van der Poorten suspected Apéry was on to something and set out to confirm his proof. Two months later they finished verification of Apéry's proof, and on August 18 Cohen delivered a lecture giving full details of the proof. After the lecture Apéry himself took to the podium to explain the source of some of his ideas.[2]

Apéry's proof

Apéry's original proof[3][4] was based on the well-known irrationality criterion from Peter Gustav Lejeune Dirichlet, which states that a number is irrational if there are infinitely many coprime integers p and q such that

for some fixed c, δ > 0.

The starting point for Apéry was the series representation of as

Roughly speaking, Apéry then defined a sequence which converges to about as fast as the above series, specifically

He then defined two more sequences and that, roughly, have the quotient . These sequences were

and

The sequence converges to fast enough to apply the criterion, but unfortunately is not an integer after . Nevertheless, Apéry showed that even after multiplying and by a suitable integer to cure this problem the convergence was still fast enough to guarantee irrationality.

Later proofs

Within a year of Apéry's result an alternative proof was found by Frits Beukers,[5] who replaced Apéry's series with integrals involving the shifted Legendre polynomials . Using a representation that would later be generalized to Hadjicostas's formula, Beukers showed that

for some integers An and Bn (sequences OEISA171484 and OEISA171485). Using partial integration and the assumption that was rational and equal to , Beukers eventually derived the inequality

which is a contradiction since the right-most expression tends to zero as , and so must eventually fall below .

A more recent proof by Wadim Zudilin is more reminiscent of Apéry's original proof,[6] and also has similarities to a fourth proof by Yuri Nesterenko.[7] These later proofs again derive a contradiction from the assumption that is rational by constructing sequences that tend to zero but are bounded below by some positive constant. They are somewhat less transparent than the earlier proofs, since they rely upon hypergeometric series.

Higher zeta constants

See also Particular values of the Riemann zeta function § Odd positive integers

Apéry and Beukers could simplify their proofs to work on as well thanks to the series representation

Due to the success of Apéry's method a search was undertaken for a number with the property that

If such a were found then the methods used to prove Apéry's theorem would be expected to work on a proof that is irrational. Unfortunately, extensive computer searching[8] has failed to find such a constant, and in fact it is now known that if exists and if it is an algebraic number of degree at most 25, then the coefficients in its minimal polynomial must be enormous, at least , so extending Apéry's proof to work on the higher odd zeta constants does not seem likely to work.

Work by Wadim Zudilin and Tanguy Rivoal has shown that infinitely many of the numbers must be irrational,[9] and even that at least one of the numbers , , , and must be irrational.[10] Their work uses linear forms in values of the zeta function and estimates upon them to bound the dimension of a vector space spanned by values of the zeta function at odd integers. Hopes that Zudilin could cut his list further to just one number did not materialise, but work on this problem is still an active area of research. Higher zeta constants have application to physics: they describe correlation functions in quantum spin chains.[11]

References

  1. ^ Kohnen, Winfried (1989). "Transcendence conjectures about periods of modular forms and rational structures on spaces of modular forms". Proc. Indian Acad. Sci. Math. Sci. 99 (3): 231–233. doi:10.1007/BF02864395. S2CID 121346325.
  2. ^ A. van der Poorten (1979). "A proof that Euler missed..." (PDF). The Mathematical Intelligencer. 1 (4): 195–203. doi:10.1007/BF03028234. S2CID 121589323.
  3. ^ Apéry, R. (1979). "Irrationalité de ζ(2) et ζ(3)". Astérisque. 61: 11–13.
  4. ^ Apéry, R. (1981), "Interpolation de fractions continues et irrationalité de certaines constantes", Bulletin de la section des sciences du C.T.H.S III, pp. 37–53
  5. ^ F. Beukers (1979). "A note on the irrationality of ζ(2) and ζ(3)". Bulletin of the London Mathematical Society. 11 (3): 268–272. doi:10.1112/blms/11.3.268.
  6. ^ Zudilin, W. (2002). "An Elementary Proof of Apéry's Theorem". arXiv:math/0202159.
  7. ^ Ю. В. Нестеренко (1996). Некоторые замечания о ζ(3). Матем. Заметки (in Russian). 59 (6): 865–880. doi:10.4213/mzm1785. English translation: Yu. V. Nesterenko (1996). "A Few Remarks on ζ(3)". Math. Notes. 59 (6): 625–636. doi:10.1007/BF02307212. S2CID 117487836.
  8. ^ D. H. Bailey, J. Borwein, N. Calkin, R. Girgensohn, R. Luke, and V. Moll, Experimental Mathematics in Action, 2007.
  9. ^ Rivoal, T. (2000). "La fonction zeta de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs". Comptes Rendus de l'Académie des Sciences, Série I. 331 (4): 267–270. arXiv:math/0008051. Bibcode:2000CRASM.331..267R. doi:10.1016/S0764-4442(00)01624-4. S2CID 119678120.
  10. ^ W. Zudilin (2001). "One of the numbers ζ(5), ζ(7), ζ(9), ζ(11) is irrational". Russ. Math. Surv. 56 (4): 774–776. Bibcode:2001RuMaS..56..774Z. doi:10.1070/RM2001v056n04ABEH000427.
  11. ^ H. E. Boos; V. E. Korepin; Y. Nishiyama; M. Shiroishi (2002). "Quantum Correlations and Number Theory". Journal of Physics A. 35 (20): 4443–4452. arXiv:cond-mat/0202346. Bibcode:2002JPhA...35.4443B. doi:10.1088/0305-4470/35/20/305. S2CID 119143600.

Read other articles:

Michał IRaja Michał Raja PolandiaAdipati Agung LituaniaBerkuasa19 Juni 1669 – 10 November 1673Penobatan29 September 1669PendahuluJan II KazimierzPenerusJan III SobieskiInformasi pribadiKelahiran(1640-05-31)31 Mei 1640Biały Kamień, PolandiaKematian10 November 1673(1673-11-10) (umur 33)Lwów, PolandiaPemakamanKatedral Wawel (dimakamkan tanggal 31 Januari 1676)WangsaWiśniowieckiAyahJeremi WiśniowieckiIbuGryzelda Konstancja ZamoyskaPasanganEleonora Maria JosefaTanda tangan Michał I ...

 

Keuskupan Agung SeoulArchidioecesis Seulum서울 대교구Katedral Konsepsi Imakulata dan St. Nikolas Myeong-dong di SeoulLokasiNegara Korea Selatan Korea UtaraStatistikLuas17.349 km2 (6.698 sq mi)Populasi- Total- Katolik(per 2014)10.143.6451,472,815 (14.5%)InformasiRitusRitus LatinKatedralKatedral Konsepsi Imakulata dan St. Nikolas Myeong-dong di SeoulKepemimpinan kiniPausFransiskusUskup AgungPeter Chung Soon-taickSufraganKeuskupan Ch’unch’onK...

 

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article possibly contains original research. Please improve it by verifying the claims made and adding inline citations. Statements consisting only of original research should be removed. (October 2019) (Learn how and when to remove this template message) This article relies excessively on references to primary sources. Please improve t...

Verizon Logo Verizon High Speed Internet is a digital subscriber line (DSL) Internet service offered by Verizon. It allows consumers to use their telephone and Internet service simultaneously over the same telephone line while benefiting from Internet connection speeds significantly faster than dial-up.[1] This service was launched in 1998 in the North Jersey, Philadelphia, Pittsburgh and Washington D.C. areas, when Verizon was Bell Atlantic. Today, this service is available in all of...

 

Pemberontakan BoxerTentara BoxerTanggal2 November 1899 - 7 September 1901LokasiTiongkokHasil Kemenangan AliansiPenandatangan Protokol BoxerPihak terlibat Aliansi 8 Negara Kekaisaran Jepang Kekaisaran Rusia  Britania Raya  Prancis  Amerika Serikat Kekaisaran Jerman Kerajaan Italia Austria-Hungaria Konsesi Asing dan Wilayah Sewaan: Konsesi Asing di Tianjin Permukiman Internasional Shanghai Kuartal Kedutaan Beijing Pemukiman Internasional Gulangyu Konsesi Teluk Kiautschou Konsesi ...

 

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article contains content that is written like an advertisement. Please help improve it by removing promotional content and inappropriate external links, and by adding encyclopedic content written from a neutral point of view. (April 2020) (Learn how and when to remove this template message) The topic of this article may not meet Wikiped...

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...

 

Elias NakhlehFaction represented in the Knesset1959–1966Progress and Development1966–1967Cooperation and Development1967–1968Progress and Development1968–1969Jewish-Arab Brotherhood1969–1974Cooperation and Brotherhood Personal detailsBorn1913Rameh, Ottoman EmpireDied6 September 1990 Elias Nakhleh (Arabic: إلياس نخلة, Hebrew: אליאס נח'לה; 1913 – 6 September 1990) was an Israeli Arab politician who served as a member of the Knesset between 1959 and 1974. Biography...

 

В Википедии есть статьи о других людях с фамилией Кидман. В статье не хватает ссылок на источники (см. рекомендации по поиску). Информация должна быть проверяема, иначе она может быть удалена. Вы можете отредактировать статью, добавив ссылки на авторитетные источники в ви�...

Дизайн Изучается в design research[d] и design studies[d]  Медиафайлы на Викискладе Дизайн (от англ. design — проектировать, чертить, задумать, а также проект, план, рисунок) — деятельность по проектированию эстетических свойств промышленных изделий («художественное констру...

 

Assassinat d'Yitzhak Rabin La place Rabin, anciennement place des Rois d'Israël avant l'assassinat. Localisation Tel Aviv-Jaffa (Israël) Cible Yitzhak Rabin Coordonnées 32° 04′ 54,8″ nord, 34° 46′ 51,4″ est Date 4 novembre 1995 Vers 21 h 30 (heure normale d'Israël) Type Assassinat politique Armes Beretta Cheetah 84F semi-automatique Morts 1 Blessés Yoram Rubin Auteurs Yigal Amir Mouvance Ultranationalisme, nationalisme religieux, néosio...

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (مارس 2020) هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (�...

Частина серії проФілософіяLeft to right: Plato, Kant, Nietzsche, Buddha, Confucius, AverroesПлатонКантНіцшеБуддаКонфуційАверроес Філософи Епістемологи Естетики Етики Логіки Метафізики Соціально-політичні філософи Традиції Аналітична Арістотелівська Африканська Близькосхідна іранська Буддій�...

 

Temperature at which air becomes saturated with water vapour during a cooling process This article is about the meteorological dew point. For the petroleum term, see Hydrocarbon dew point. This graph shows the maximum percentage, by mass, of water vapor that air at sea-level pressure across a range of temperatures can contain. For a lower ambient pressure, a curve has to be drawn above the current curve. A higher ambient pressure yields a curve under the current curve. Humidity and hygrometry...

 

Defunct functional commission of the United NationsFor similarly named entites, see United Nations human rights organization (disambiguation). The United Nations Commission on Human Rights (UNCHR) was a functional commission within the overall framework of the United Nations from 1946 until it was replaced by the United Nations Human Rights Council in 2006. It was a subsidiary body of the UN Economic and Social Council (ECOSOC), and was also assisted in its work by the Office of the United Na...

Railway station in Gujarat, India Bhanvad railway station Indian Railways stationGeneral informationLocationBhanvad, GujaratIndiaCoordinates21°55′59″N 69°47′55″E / 21.933070°N 69.798703°E / 21.933070; 69.798703Elevation62 m (203.4 ft)Owned byMinistry of Railways, Indian RailwaysOperated byWestern RailwayLine(s)Jamnagar–Porbandar linePlatforms2Tracks2ConstructionParkingNoBicycle facilitiesNoOther informationStatusFunctioningStation codeBNVD Zone(...

 

WASP-18bPerbandingan ukuran WASP-18b dengan Jupiter.PenemuanDitemukan olehHellier et al. (SuperWASP)[1]Tanggal penemuan27 Agustus 2009[1]Metode deteksiTransit[1] (termasuk gerhana sekunder)Ciri-ciri orbitApastron002.045 AU (3,059×1011 km)Periastron002.007 AU (3,002×1011 km)Sumbu semimayor002.026 ± 000.068 AU (3,031×1011 ± 1,02×1010 km)[2]Eksentrisitas0,0092 ± 0,0028[2]Periode orbit0,9414...

 

English author (born 1979) For the singer, see Kero Kero Bonito. Sarah PerryFRSLBorn (1979-11-28) 28 November 1979 (age 44)Chelmsford, Essex, EnglandOccupationWriterAlma materRoyal Holloway, University of London, Chelmsford County High School for GirlsChancellor of the University of EssexIncumbentAssumed office 1 August 2023Vice ChancellorAnthony ForsterPreceded byJohn Bercow (vacant 2021-2023) Websitewww.sarahperry.net Sarah Grace Perry FRSL (born 28 November 1979) is an Englis...

لافتة على الطريق السريع إلى مكة، تشير إلى أن أحد الاتجاهات مخصص «للمسلمين فقط»، بينما يعد الطريق الثاني «إلزامي لغير المسلمين». تتمركز الشرطة الدينية (هيئة الأمر بالمعروف والنهي عن المنكر) خارج المنعطف على الطريق الرئيسي لمنع غير المسلمين من الانتقال إلى مكة والمدينة.[1&...

 

Dieser Artikel beschreibt die Bundesstraße 35 in Deutschland. Zur gleichnamigen Straße in Österreich siehe Retzer Straße. Vorlage:Infobox hochrangige Straße/Wartung/DE-B Bundesstraße 35 in Deutschland Karte Verlauf der B 35 Alle Koordinaten: OSM | WikiMap Basisdaten Betreiber: Deutschland Bundesrepublik Deutschland Straßenbeginn: Lingenfeld(49° 14′ 4″ N, 8° 21′ 20″ O49.2345198.355481) Straßenende: Illingen(48° 57′...