PSL(2,7)

In mathematics, the projective special linear group PSL(2, 7), isomorphic to GL(3, 2), is a finite simple group that has important applications in algebra, geometry, and number theory. It is the automorphism group of the Klein quartic as well as the symmetry group of the Fano plane. With 168 elements, PSL(2, 7) is the smallest nonabelian simple group after the alternating group A5 with 60 elements, isomorphic to PSL(2, 5).

Definition

The general linear group GL(2, 7) consists of all invertible 2×2 matrices over F7, the finite field with 7 elements. These have nonzero determinant. The subgroup SL(2, 7) consists of all such matrices with unit determinant. Then PSL(2, 7) is defined to be the quotient group

SL(2, 7) / {I, −I}

obtained by identifying I and −I, where I is the identity matrix. In this article, we let G denote any group that is isomorphic to PSL(2, 7).

Properties

G = PSL(2, 7) has 168 elements. This can be seen by counting the possible columns; there are 72 − 1 = 48 possibilities for the first column, then 72 − 7 = 42 possibilities for the second column. We must divide by 7 − 1 = 6 to force the determinant equal to one, and then we must divide by 2 when we identify I and −I. The result is (48 × 42) / (6 × 2) = 168.

It is a general result that PSL(n, q) is simple for n, q ≥ 2 (q being some power of a prime number), unless (n, q) = (2, 2) or (2, 3). PSL(2, 2) is isomorphic to the symmetric group S3, and PSL(2, 3) is isomorphic to alternating group A4. In fact, PSL(2, 7) is the second smallest nonabelian simple group, after the alternating group A5 = PSL(2, 5) = PSL(2, 4).

The number of conjugacy classes and irreducible representations is 6. The sizes of conjugacy classes are 1, 21, 42, 56, 24, 24. The dimensions of irreducible representations 1, 3, 3, 6, 7, 8.

Character table

where

The following table describes the conjugacy classes in terms of the order of an element in the class, the size of the class, the minimum polynomial of every representative in GL(3, 2), and the function notation for a representative in PSL(2, 7). Note that the classes 7A and 7B are exchanged by an automorphism, so the representatives from GL(3, 2) and PSL(2, 7) can be switched arbitrarily.

Order Size Min Poly Function
1 1 x + 1 x
2 21 x2 + 1 −1/x
3 56 x3 + 1 2x
4 42 x3 + x2 + x + 1 1/(3 − x)
7 24 x3 + x + 1 x + 1
7 24 x3 + x2 + 1 x + 3

The order of group is 168 = 3 × 7 × 8, this implies existence of Sylow's subgroups of orders 3, 7 and 8. It is easy to describe the first two, they are cyclic, since any group of prime order is cyclic. Any element of conjugacy class 3A56 generates Sylow 3-subgroup. Any element from the conjugacy classes 7A24, 7B24 generates the Sylow 7-subgroup. The Sylow 2-subgroup is a dihedral group of order 8. It can be described as centralizer of any element from the conjugacy class 2A21. In the GL(3, 2) representation, a Sylow 2-subgroup consists of the upper triangular matrices.

This group and its Sylow 2-subgroup provide a counter-example for various normal p-complement theorems for p = 2.

Actions on projective spaces

G = PSL(2, 7) acts via linear fractional transformation on the projective line P1(7) over the field with 7 elements:

Every orientation-preserving automorphism of P1(7) arises in this way, and so G = PSL(2, 7) can be thought of geometrically as a group of symmetries of the projective line P1(7); the full group of possibly orientation-reversing projective linear automorphisms is instead the order 2 extension PGL(2, 7), and the group of collineations of the projective line is the complete symmetric group of the points.

However, PSL(2, 7) is also isomorphic to PSL(3, 2) (= SL(3, 2) = GL(3, 2)), the special (general) linear group of 3×3 matrices over the field with 2 elements. In a similar fashion, G = PSL(3, 2) acts on the projective plane P2(2) over the field with 2 elements — also known as the Fano plane:

For and

Again, every automorphism of P2(2) arises in this way, and so G = PSL(3, 2) can be thought of geometrically as the symmetry group of this projective plane. The Fano plane can be used to describe multiplication of octonions, so G acts on the set of octonion multiplication tables.

Symmetries of the Klein quartic

The Klein quartic can be realized as a quotient of the order-3 heptagonal or the order-7 triangular tiling.

The Klein quartic is the projective variety over the complex numbers C defined by the quartic polynomial

x3y + y3z + z3x = 0.

It is a compact Riemann surface of genus g = 3, and is the only such surface for which the size of the conformal automorphism group attains the maximum of 84(g − 1). This bound is due to the Hurwitz automorphisms theorem, which holds for all g > 1. Such "Hurwitz surfaces" are rare; the next genus for which any exist is g = 7, and the next after that is g = 14.

As with all Hurwitz surfaces, the Klein quartic can be given a metric of constant negative curvature and then tiled with regular (hyperbolic) heptagons, as a quotient of the order-3 heptagonal tiling, with the symmetries of the surface as a Riemannian surface or algebraic curve exactly the same as the symmetries of the tiling. For the Klein quartic this yields a tiling by 24 heptagons, and the order of G is thus related to the fact that 24 × 7 = 168. Dually, it can be tiled with 56 equilateral triangles, with 24 vertices, each of degree 7, as a quotient of the order-7 triangular tiling.

Klein's quartic arises in many fields of mathematics, including representation theory, homology theory, octonion multiplication, Fermat's Last Theorem, and Stark's theorem on imaginary quadratic number fields of class number 1.

Mathieu group

PSL(2, 7) is a maximal subgroup of the Mathieu group M21; the groups M21 and M24 can be constructed as extensions of PSL(2, 7). These extensions can be interpreted in terms of the tiling of the Klein quartic, but are not realized by geometric symmetries of the tiling.[1]

Permutation actions

The group PSL(2, 7) acts on various finite sets:

  • In its original interpretation as PSL(2, 7), orientation-preserving linear automorphisms of the projective line P1(F7), it acts transitively on the 8 points with a stabilizer of order 21 fixing a given point. It also acts 2-transitively with stabilizer of order 3 on each pair of points; and it has two orbits on triples of points, with trivial stabilizer on each triple. (The larger group PGL(2, 7) acts sharply 3-transitively.)
  • Interpreted as PGL(3, 2), linear automorphisms of the Fano plane P2(F2), it acts 2-transitively on the 7 points, with stabilizer of order 24 fixing each point, and stabilizer of order 4 fixing each pair of points.
  • Interpreted as automorphisms of a tiling of the Klein quartic, it acts transitively on the 24 vertices (or dually, 24 heptagons), with stabilizer of order 7 (corresponding to a rotation about the vertex/heptagon).
  • Interpreted as a subgroup of the Mathieu group M21, the subgroup acts non-transitively on 21 points.

References

  • Richter, David A., How to Make the Mathieu Group M24, retrieved 2010-04-15

Further reading

Read other articles:

Cet article est une ébauche concernant l’administration territoriale et l’Angleterre. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Angleterre du Sud-EstNom officiel (en) South East EnglandNom local (en) South East EnglandGéographiePays  Royaume-UniNation constitutive AngleterreSuperficie 19 096 km2Coordonnées 51° 18′ N, 0° 48′ ODémographiePopulation 9,4 M ...

 

 

حلقات زحلمعلومات عامةصنف فرعي من حلقة كوكبية المكتشف أو المخترع كريستيان هوغنس[1] زمن الاكتشاف أو الاختراع 1656[1] الجرم السماوي الأم زحل لديه جزء أو أجزاء حاجز كاسينيPhoebe ring (en) gap in the rings of Saturn (en) تعديل - تعديل مصدري - تعديل ويكي بيانات طغت على المجموعة الكاملة من حلقات ر...

 

 

Pemandangan Semarang dari udara Kota Semarang adalah ibu kota Jawa Tengah. Gedung tertinggi di Semarang yang pertama kali adalah kantor pemerintah Provinsi Jawa Tengah 12 lantai yang berdiri tahun 1987, diikuti Hotel Santika 12 lantai yang berdiri tahun 1990 dan Hotel Ciputra 12 lantai yang berdiri tahun 1993.[1] Pembangunan gedung tinggi Semarang terkendala di bawah 12 lantai sesuai aturan Kawasan Keselamatan Operasi Penerbangan karena Bandar Udara Internasional Achmad Yani di dalam ...

This is the list of cathedrals in the Dominican Republic sorted by denomination. Anglican Catedral de la Epifania/Union Church, Santo Domingo (The Episcopal Church) Catedral Primada de América, Ciudad Colonial, Santo Domingo Roman Catholic Cathedrals of the Roman Catholic Church in the Dominican Republic:[1] Basilica Cathedral of Santa María la Menor (Catedral Primada de América) (Spanish: Basílica Menor de Santa María de la Encarnación), Ciudad Colonial, Santo Domingo Basílic...

 

 

الدوري الفنلندي الممتاز 2019 تفاصيل الموسم الدوري الفنلندي الممتاز  النسخة 110  البلد فنلندا  التاريخ بداية:3 أبريل 2019  نهاية:3 نوفمبر 2019[1]  البطل كووبيون بالوسيورا[2]  مباريات ملعوبة 132   عدد المشاركين 12   الدوري الفنلندي الممتاز 2018  الدوري الفنلن...

 

 

Philosophy of neuroscience This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article possibly contains original research. Please improve it by verifying the claims made and adding inline citations. Statements consisting only of original research should be removed. (January 2018) (Learn how and when to remove this message) This article is written like a personal reflection, personal ess...

House museum in Ontario, CanadaBillings Estate MuseumEstablished1975; 49 years ago (1975)LocationOttawa, Ontario, CanadaTypehouse museumWebsite[1] National Historic Site of CanadaOfficial nameBillings House National Historic Site of CanadaDesignated1968 The Billings Estate National Historic Site is a heritage museum in Ottawa, Ontario, Canada. It is located at 2100 Cabot St. in the former home of one of the region's earliest settlers. The oldest wood-framed house in Ottawa ...

 

 

Сельское поселение России (МО 2-го уровня)Новотитаровское сельское поселение Флаг[d] Герб 45°14′09″ с. ш. 38°58′16″ в. д.HGЯO Страна  Россия Субъект РФ Краснодарский край Район Динской Включает 4 населённых пункта Адм. центр Новотитаровская Глава сельского пос�...

 

 

Hop

Kerucut hop di ladang hop di Hallertau, Jerman. Hop adalah sekumpulan bunga betina (disebut benih kerucut atau strobilus), dari spesies hop, Humulus lupulus.[1] Hop umumnya digunakan sebagai perasa dan penstabil rasa bir, di mana mereka menambah rasa pahit dan asam. Hop juga digunakan dalam pembuatan minuman lain dan juga dalam pembuatan jamu. Hop telah di budidaya kan secara terus menerus sejak abad ke-8 atau ke-9 sesudah Masehi di kebun Bohemia di distrik Hallertau di Bavaria dan da...

Australian Army officer and Governor of Tasmania (1928–2023) For other people named Phillip Bennett, see Phillip Bennett (disambiguation). GeneralSir Phillip BennettAC, KBE, DSOBennett in 199223rd Governor of TasmaniaIn office19 October 1987 – 2 October 1995MonarchElizabeth IIPremierRobin Gray Michael Field Ray GroomPreceded bySir James PlimsollSucceeded bySir Guy Green Personal detailsBorn(1928-12-27)27 December 1928Perth, Western Australia, AustraliaDied1 Au...

 

 

Artikel atau sebagian dari artikel ini mungkin diterjemahkan dari Boğaziçi University di en.wikipedia.org. Isinya masih belum akurat, karena bagian yang diterjemahkan masih perlu diperhalus dan disempurnakan. Jika Anda menguasai bahasa aslinya, harap pertimbangkan untuk menelusuri referensinya dan menyempurnakan terjemahan ini. Anda juga dapat ikut bergotong royong pada ProyekWiki Perbaikan Terjemahan. (Pesan ini dapat dihapus jika terjemahan dirasa sudah cukup tepat. Lihat pula: panduan pe...

 

 

American judge (born 1950) This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: George H. Wu – news · newspapers · books · scholar · JSTOR (September 2021) (Learn how and when to remove this message...

American regional sports network For the original SportSouth (1990-1996), see Bally Sports South. Television channel Bally Sports SoutheastTypeRegional sports networkCountryUnited StatesBroadcast areaGeorgiaTennesseeAlabamaMississippiSouth Carolinaparts of North Carolina including Asheville, Charlotte, and Winston-SalemNationwide (via satellite)NetworkBally SportsHeadquartersAtlanta, GeorgiaProgrammingLanguage(s)EnglishPicture format720p (HDTV)480i (SDTV)OwnershipOwnerDiamond Sports GroupPare...

 

 

51°30′47.7″N 0°5′21.7″W / 51.513250°N 0.089361°W / 51.513250; -0.089361 Mansion HouseInformasi umumGaya arsitekturPalladianKotaLondon, EC4NegaraBritania RayaPenyewa sekarangLord Mayor LondonMulai dibangun1739Desain dan konstruksiArsitekGeorge Dance the ElderSitus webMansion House Mansion House adalah kediaman resmi Lord Mayor London, yaitu wali kota City of London (tidak sama dengan Wali Kota London yang mencakup seluruh wilayah London Raya). Gedung ini dib...

 

 

New Testament manuscript Papyrus 𝔓86New Testament manuscriptNamePap. Col. 5516TextGospel of Matthew 5 †Date4th centuryScriptGreekFoundEgyptNow atUniversity of CologneCiteCharalambakis-Hagedorn-Kaimakis-Thüngen, Vier literarische Papyri der Kölner Sammlung, ZPE 14 (Barcelona: 1974), pp. 37-40.TypeAlexandrian text-typeCategoryII Papyrus 86 (in the Gregory-Aland numbering), designated by siglum 𝔓86, is an early copy of the New Testament in Greek. It is a papyrus manuscript of the ...

Cet article est une ébauche concernant les mollusques. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations du projet zoologie. Pectinida Aequipecten opercularisClassification WoRMS Règne Animalia Embranchement Mollusca Classe Bivalvia Sous-classe Pteriomorphia OrdrePectinidaGray, 1854 Les Pectinida sont un ordre de mollusques bivalves, dont de nombreuses espèces sont dénommées « pétoncles ». Les familles de l'ordre des Pectin...

 

 

Statue by Angela Conner Statue of Charles de GaulleArtistAngela ConnerYear1993LocationCarlton Gardens, London A bronze statue of Charles de Gaulle stands in Carlton Gardens in the City of Westminster, London. Charles de Gaulle, the leader of Free France, set up his government in exile at No. 4 Carlton Gardens.[1] The statue was campaigned for by Mary Soames, the daughter of De Gaulle's contemporary Winston Churchill.[2] It was unveiled by Queen Elizabeth The Queen Mother on 23...

 

 

Chief commanding authority of the Russian Ground ForcesThis article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Commander-in-Chief of the Russian Ground Forces – news · newspapers · books · scholar · JSTOR (September 2018) Commander-in-Chief of the Russian Ground ForcesГлавнокомандующие С�...

Football stadium in Honduras Francisco Martínez DurónFull nameEstadio Francisco Martínez DurónLocationTocoa, Colón, HondurasCoordinates15°39′20″N 85°59′18″W / 15.65556°N 85.98833°W / 15.65556; -85.98833Capacity3,000SurfaceGrassConstructionOpened1986Renovated2012Expanded2012TenantsReal SociedadBoca Juniors de Tocoa Estadio Francisco Martínez Durón is a football stadium in Tocoa, Honduras. It is currently used mostly for football matches and is the hom...

 

 

Gange Le Gange à Varanasi. Carte des bassins versants combinés du Gange (orange), du Brahmapoutre (violet), et du Meghna (vert). Caractéristiques Longueur 2 510 km Bassin 907 000 km2 Bassin collecteur Bassin du Gange Débit moyen 16 648 m3/s (Barrage de Farakka) Régime Pluvial de mousson Cours Source Confluent du Bhagirathi et de l'Alaknanda · Localisation Devprayag (Uttarakhand) Inde · Altitude 459 m · Coordonnées 30° 08′ 42,02″ ...