Collineation

In projective geometry, a collineation is a one-to-one and onto map (a bijection) from one projective space to another, or from a projective space to itself, such that the images of collinear points are themselves collinear. A collineation is thus an isomorphism between projective spaces, or an automorphism from a projective space to itself. Some authors restrict the definition of collineation to the case where it is an automorphism.[1] The set of all collineations of a space to itself form a group, called the collineation group.

Definition

Simply, a collineation is a one-to-one map from one projective space to another, or from a projective space to itself, such that the images of collinear points are themselves collinear. One may formalize this using various ways of presenting a projective space. Also, the case of the projective line is special, and hence generally treated differently.

Linear algebra

For a projective space defined in terms of linear algebra (as the projectivization of a vector space), a collineation is a map between the projective spaces that is order-preserving with respect to inclusion of subspaces.

Formally, let V be a vector space over a field K and W a vector space over a field L. Consider the projective spaces PG(V) and PG(W), consisting of the vector lines of V and W. Call D(V) and D(W) the set of subspaces of V and W respectively. A collineation from PG(V) to PG(W) is a map α : D(V) → D(W), such that:

  • α is a bijection.
  • AB ⇔ α(A) ⊆ α(B) for all A, B in D(V).[2]

Axiomatically

Given a projective space defined axiomatically in terms of an incidence structure (a set of points P, lines L, and an incidence relation I specifying which points lie on which lines, satisfying certain axioms), a collineation between projective spaces thus defined then being a bijective function f between the sets of points and a bijective function g between the set of lines, preserving the incidence relation.[3]

Every projective space of dimension greater than or equal to three is isomorphic to the projectivization of a linear space over a division ring, so in these dimensions this definition is no more general than the linear-algebraic one above, but in dimension two there are other projective planes, namely the non-Desarguesian planes, and this definition allows one to define collineations in such projective planes.

For dimension one, the set of points lying on a single projective line defines a projective space, and the resulting notion of collineation is just any bijection of the set.

Collineations of the projective line

For a projective space of dimension one (a projective line; the projectivization of a vector space of dimension two), all points are collinear, so the collineation group is exactly the symmetric group of the points of the projective line. This is different from the behavior in higher dimensions, and thus one gives a more restrictive definition, specified so that the fundamental theorem of projective geometry holds.

In this definition, when V has dimension two, a collineation from PG(V) to PG(W) is a map α : D(V) → D(W), such that:

  • The zero subspace of V is mapped to the zero subspace of W.
  • V is mapped to W.
  • There is a nonsingular semilinear map β from V to W such that, for all v in V,

This last requirement ensures that collineations are all semilinear maps.

Types

The main examples of collineations are projective linear transformations (also known as homographies) and automorphic collineations. For projective spaces coming from a linear space, the fundamental theorem of projective geometry states that all collineations are a combination of these, as described below.

Projective linear transformations

Projective linear transformations (homographies) are collineations (planes in a vector space correspond to lines in the associated projective space, and linear transformations map planes to planes, so projective linear transformations map lines to lines), but in general not all collineations are projective linear transformations. The group of projective linear transformations (PGL) is in general a proper subgroup of the collineation group.

Automorphic collineations

An automorphic collineation is a map that, in coordinates, is a field automorphism applied to the coordinates.

Fundamental theorem of projective geometry

If the geometric dimension of a pappian projective space is at least 2, then every collineation is the product of a homography (a projective linear transformation) and an automorphic collineation. More precisely, the collineation group is the projective semilinear group, which is the semidirect product of homographies by automorphic collineations.

In particular, the collineations of the real projective plane PG(2, R) are exactly the homographies, as R has no non-trivial automorphisms (see Automorphism#Examples and footnote d in Real number).

Suppose φ is a nonsingular semilinear map from V to W, with the dimension of V at least three. Define α : D(V) → D(W) by saying that Zα = {φ(z) : zZ} for all Z in D(V). As φ is semilinear, one easily checks that this map is properly defined, and furthermore, as φ is not singular, it is bijective. It is obvious now that α is a collineation. We say that α is induced by φ.

The fundamental theorem of projective geometry states the converse:

Suppose V is a vector space over a field K with dimension at least three, W is a vector space over a field L, and α is a collineation from PG(V) to PG(W). This implies K and L are isomorphic fields, V and W have the same dimension, and there is a semilinear map φ such that φ induces α.

For n ≥ 3, the collineation group is the projective semilinear group, PΓL – this is PGL, twisted by field automorphisms; formally, the semidirect product PΓL ≅ PGL ⋊ Gal(K/k), where k is the prime field for K.

Linear structure

Thus for K a prime field ( or ), we have PGL = PΓL, but for K not a prime field (such as or for n ≥ 2), the projective linear group is in general a proper subgroup of the collineation group, which can be thought of as "transformations preserving a projective semi-linear structure". Correspondingly, the quotient group PΓL / PGL ≅ Gal(K/k) corresponds to "choices of linear structure", with the identity (base point) being the existing linear structure. Given a projective space without an identification as the projectivization of a linear space, there is no natural isomorphism between the collineation group and PΓL, and the choice of a linear structure (realization as projectivization of a linear space) corresponds to a choice of subgroup PGL < PΓL, these choices forming a torsor over Gal(K/k).

History

The idea of a line was abstracted to a ternary relation determined by collinearity (points lying on a single line). According to Wilhelm Blaschke[4] it was August Möbius that first abstracted this essence of geometrical transformation:

What do our geometric transformations mean now? Möbius threw out and fielded this question already in his Barycentric Calculus (1827). There he spoke not of transformations but of permutations [Verwandtschaften], when he said two elements drawn from a domain were permuted when they were interchanged by an arbitrary equation. In our particular case, linear equations between homogeneous point coordinates, Möbius called a permutation [Verwandtschaft] of both point spaces in particular a collineation. This signification would be changed later by Chasles to homography. Möbius’ expression is immediately comprehended when we follow Möbius in calling points collinear when they lie on the same line. Möbius' designation can be expressed by saying, collinear points are mapped by a permutation to collinear points, or in plain speech, straight lines stay straight.

Contemporary mathematicians view geometry as an incidence structure with an automorphism group consisting of mappings of the underlying space that preserve incidence. Such a mapping permutes the lines of the incidence structure, and the notion of collineation persists.

As mentioned by Blaschke and Klein, Michel Chasles preferred the term homography to collineation. A distinction between the terms arose when the distinction was clarified between the real projective plane and the complex projective line. Since there are no non-trivial field automorphisms of the real number field, all the collineations are homographies in the real projective plane,[5] however due to the field automorphism of complex conjugation, not all collineations of the complex projective line are homographies. In applications such as computer vision where the underlying field is the real number field, homography and collineation can be used interchangeably.

Anti-homography

The operation of taking the complex conjugate in the complex plane amounts to a reflection in the real line. With the notation z for the conjugate of z, an anti-homography is given by

Thus an anti-homography is the composition of conjugation with a homography, and so is an example of a collineation which is not an homography. For example, geometrically, the mapping amounts to circle inversion.[6] The transformations of inversive geometry of the plane are frequently described as the collection of all homographies and anti-homographies of the complex plane.[7]

Notes

  1. ^ For instance, Beutelspacher & Rosenbaum 1998, p.21, Casse 2006, p. 56 and Yale 2004, p. 226
  2. ^ Geometers still commonly use an exponential type notation for functions and this condition will often appear as ABAαBα for all A, B in D(V).
  3. ^ "Preserving the incidence relation" means that if point p is on line l then f(p) is in g(l); formally, if (p, l) ∈ I then (f(p), g(l)) ∈ I.
  4. ^ Felix Klein (1926, 1949) Vorlesungen über Höhere Geometrie, edited by Blaschke, Seite 138
  5. ^ Casse 2006, p. 64, Corollary 4.29
  6. ^ Morley & Morley 1933, p. 38
  7. ^ Blair 2000, p. 43; Schwerdtfeger 2012, p. 42.

References

  • Beutelspacher, Albrecht; Rosenbaum, Ute (1998), Projective Geometry / From Foundations to Applications, Cambridge University Press, ISBN 0-521-48364-6
  • Blair, David E. (2000), Inversion Theory and Conformal Mapping, Student mathematical library, vol. 9, American Mathematical Society, ISBN 9780821826362
  • Blaschke, Wilhelm (1948), Projective Geometrie, Wolfenbütteler Verlagsanstalt
  • Casse, Rey (2006), Projective Geometry / An Introduction, Oxford University Press, ISBN 9780199298860
  • Morley, Frank; Morley, F.V. (1933), Inversive Geometry, London: G. Bell and Sons
  • Schwerdtfeger, Hans (2012), Geometry of Complex Numbers, Courier Dover Publications, ISBN 9780486135861
  • Yale, Paul B. (2004) [first published 1968], Geometry and Symmetry, Dover, ISBN 0-486-43835-X

Read other articles:

Kementerian Pendidikan Tinggi Arab Saudi Situs webhttp://www.mohe.gov.sa/ Kementerian Pendidikan Tinggi Arab Saudi ([وزارة التعليم العالي السعودية Wuzarah At-Ta'lim al-'Ali as-Su'udiyyah] Error: {{Lang-xx}}: text has italic markup (help))[1] adalah sebuah kementerian dalam Pemerintah Arab Saudi yang bertanggungjawab terhadap kebijakan pendidikan tinggi di Arab Saudi dan mengawasi kebijakan perguruan tinggi dalam negeri. Kementerian ini berdiri pada tahun 1395...

 

 

Aset Jerman di suaka pajak dibandingkan dengan total PDB Jerman.[1] Suaka-suaka di negara-negara yang berbagi informasi pajak sehingga memungkinkan adanya penegakan kepatuhan jumlahnya semakin berkurang. 7 Besar yang ditampilkan adalah Hong Kong, Irlandia, Libanon, Liberia, Panama, Singapura, dan Swiss. Pusat keuangan lepas pantai (offshore financial centre, disingkat OFC), walaupun mungkin tidak pendefinisiannya, biasanya adalah suatu yurisdiksi kecil dan rendah pajak, yang memiliki ...

 

 

Daftar ini belum tentu lengkap. Anda dapat membantu Wikipedia dengan mengembangkannya. Populasi Republik Tiongkok adalah sekitar 23,31 juta pada Februari 2022. Demografi TaiwanPopulation pyramid Penduduk per kilometer persegi menurut desa Imigrasi Han Cina ke pulau-pulau Penghu dimulai pada awal abad ke-13, sementara pemukiman pulau utama terjadi dari abad ke-16 selama transisi Ming-Qing . Imigrasi lebih lanjut terjadi ketika pekerja didatangkan dari Fujian pada abad ke-17. Menurut statistik ...

Parlemen Catalonia Parlament de CatalunyaParlemen ke-12JenisJenisSatu Kamar SejarahDidirikan1932 (1932)KomposisiAnggota135Partai & kursi   CUP–CC (10)   CatComú–Podem (11)   ERC–CatSí (22)   PSC–PSOE (16)   JxSí Independen (10)   JuntsxCat (29)   Independen (1)   Cs (25)   PP (11) PemilihanSistem pemilihanPerwakilan proporsionalPemilihan berikutnya21 Desember 2017Tempat bersidangPalau del Parlament de Catalunya, Parc de la Ciuta...

 

 

Italian footballer (1953–1989) Gaetano Scirea Scirea with Juventus in 1975Personal informationDate of birth (1953-05-25)25 May 1953Place of birth Cernusco sul Naviglio, Lombardy, ItalyDate of death 3 September 1989(1989-09-03) (aged 36)Place of death Babsk, Skierniewice, PolandHeight 1.78 m (5 ft 10 in)Position(s) DefenderYouth career1970–1972 AtalantaSenior career*Years Team Apps (Gls)1972–1974 Atalanta 58 (1)1974–1988 Juventus 377 (24)Total 435 (25)International ...

 

 

Location of Virginia Beach in Virginia This is a list of the National Register of Historic Places listings in Virginia Beach, Virginia. This is intended to be a complete list of the properties and districts on the National Register of Historic Places in the independent city of Virginia Beach, Virginia, United States. The locations of National Register properties and districts for which the latitude and longitude coordinates are included below, may be seen in an online map.[1] There a...

Si CecepGenre Drama Keluarga Komedi PembuatMultivision PlusDitulis oleh Ujang Rahmat J Hanggoro SutradaraAhmad YusufPemeran Anjasmara Happy Salma Nikita Willy Nani Wijaya Cut Keke Nurdin Ali Fadly Ratu Felisha Dolly Sihombing Habibi Dhini Aminarti Penggubah lagu temaIrwan S. AzwarLagu pembukaSi Cecep oleh AnjasmaraLagu penutupSi Cecepoleh AnjasmaraPenata musikJoseph S. DjafarNegara asalIndonesiaBahasa asliBahasa IndonesiaJmlh. episode55 (daftar episode)ProduksiProduser eksekutifGobind ...

 

 

Artikel biografi ini ditulis menyerupai resume atau daftar riwayat hidup (Curriculum Vitae). Tolong bantu perbaiki agar netral dan ensiklopedis.Jon Firman Pandu Wakil Bupati Solok ke-4PetahanaMulai menjabat 26 April 2021PresidenJoko WidodoGubernurMahyeldi AnsharullahBupatiEpyardi Asda PendahuluYulfadri NurdinPenggantiPetahana Informasi pribadiLahir1 Maret 1979 (umur 45)Koto Laweh, Lembang Jaya, Solok, Sumatera BaratPartai politikGerindraSuami/istriKurniatiSunting kotak info ...

 

 

Voce principale: Calcio Catania. Associazione Fascista Calcio CataniaStagione 1938-1939Sport calcio Squadra Catania Allenatore Giovanni Degni Presidente Vittorio Emanuele Brusca Serie C1º (promosso in Serie B). Coppa ItaliaRinuncia alla prima partita delle qualificazioni. Escluso dalla Coppa. Maggiori presenzeCampionato: Spanghero (28) Miglior marcatoreCampionato: Bellini (12) StadioStadio Cibali 1937-1938 1939-1940 Si invita a seguire il modello di voce Questa voce raccoglie le inform...

Strada statale 14 bisdella Venezia GiuliaLocalizzazioneStato Italia DatiClassificazioneStrada statale InizioSussak Fineconfine di Stato presso Buccari Provvedimento di istituzioneRegio decreto 2 marzo 1942, n. 392 GestoreAASS Manuale La strada statale 14 bis della Venezia Giulia (SS 14 bis) era una strada statale italiana. Storia La SS 14 bis venne istituita nel 1942 in seguito all'annessione all'Italia di parte del territorio jugoslavo, ed era definita dal seguente percorso: Sussak - Bu...

 

 

Archaic unit for bundles of sticks Woman Carrying a Faggot, Mihály Munkácsy A faggot, in the meaning of bundle, is an archaic English unit applied to bundles of certain items. Alternate spellings in Early Modern English include fagate, faget, fagett, faggott, fagot, fagatt, fagott, ffagott, and faggat. A similar term is found in other languages (e.g. Latin: fascis). Background Sometimes called a short faggot, a faggot of sticks equals a bundle of wood sticks or billets that is 3 feet (90...

 

 

Dominican baseball player In this Spanish name, the first or paternal surname is Villar and the second or maternal family name is Roque. Baseball player Jonathan VillarVillar with the Baltimore Orioles in 2019Algodoneros de Unión Laguna – No. 2Second baseman / ShortstopBorn: (1991-05-02) May 2, 1991 (age 33)La Vega, Dominican RepublicBats: SwitchThrows: RightMLB debutJuly 22, 2013, for the Houston AstrosMLB statistics (through 2022 season)Batting average.255Home...

Бэтмен: Маска Фантазмаангл. Batman: Mask of the Phantasm Жанры неонуар, фильм-тайна, научно-фантастический фильм и боевик Техника анимации рисованная Режиссёры Эрик РадомскиБрюс Тимм На основе Бэтмен и Бэтмен Авторы сценария Алан БёрнеттПол ДиниМартин ПаскоМайкл Ри�...

 

 

此條目可能包含不适用或被曲解的引用资料,部分内容的准确性无法被证實。 (2023年1月5日)请协助校核其中的错误以改善这篇条目。详情请参见条目的讨论页。 各国相关 主題列表 索引 国内生产总值 石油储量 国防预算 武装部队(军事) 官方语言 人口統計 人口密度 生育率 出生率 死亡率 自杀率 谋杀率 失业率 储蓄率 识字率 出口额 进口额 煤产量 发电量 监禁率 死刑 国债 ...

 

 

مرسيدس بنز فانمعلومات عامةالنوع طراز سيارة الفئة ميني فان العلامة التجارية مرسيدس-بنز المصنع دايملر كرايسلرالإنتاج 2002-2005التجميع لودفيغسفيلده المحرك وناقل الحركةالمحرك محرك بنزين الوحدة سيارةالأبعادقاعدة الإطارات 2٬900 ميليمتر الطول 4٬192 ميليمتر العرض 1٬742 ميليمتر الارتف...

GimjangPersiapan untuk gimjang: bahan-bahan untuk membuat kimchi dalam skala besarNama KoreaHangul김장 Alih AksaraGimjangMcCune–ReischauerKimjang Gimjang (Hangeul: 김장), juga dapat dibaca kimjang[1] adalah tradisi persiapan dan pengawetan kimchi atau hidangan acar sayur pedas Korea yang disajikan pada musim dingin yakni di bulan November sampai Desember.[2] Selama berbulan-bulan di musim panas, kimchi dibuat dari sayur-sayuran segar yang kemudian akan difermentasi terle...

 

 

هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (أكتوبر 2023) هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة...

 

 

Current delegationJohn Barrasso (R)Cynthia Lummis (R) Wyoming was admitted to the Union on July 10, 1890, and elects United States senators to class 1 and class 2. Its current U.S. senators are Republicans John Barrasso (serving since 2007) and Cynthia Lummis (serving since 2021). 21 people have served as a United States senator from Wyoming. Francis E. Warren was Wyoming's longest serving senator (served 1890–1893; 1895–1929). List of senators Class 1Class 1 U.S. senators belong to the ...

Historical title for a ruler or military leader See also: Khagan, Khanate, and Khaganate See also: Khan (surname) Part of a series onImperial, royal, noble, gentry and chivalric ranks in West, Central, South Asia and North Africa Emperor: Caliph Shahanshah King of Kings Padishah Banbishn Sultan of Sultans Chakravarti Samrat Maharajadhiraja Khagan King: Maharaja Malik Sultan Sultana Shah Shahbanu Shirvanshah Khan Khatun Hatun Dey Nizam Nawab Amir al-umara Khagan Bek Prince or Duke: Emir Sheikh...

 

 

1993 film by Ronald F. Maxwell GettysburgTheatrical release posterDirected byRonald F. MaxwellScreenplay byRonald F. MaxwellBased onThe Killer Angelsby Michael ShaaraProduced byMoctesuma EsparzaRobert A. KatzStarring Tom Berenger Jeff Daniels Martin Sheen Maxwell Caulfield Kevin Conway C. Thomas Howell Richard Jordan James Lancaster Stephen Lang Sam Elliott CinematographyKees Van OostrumEdited byCorky EhlersMusic byRandy EdelmanProductioncompanies Turner Pictures TriStar Television Esparza/Ka...