One of the promised benefits of organic electronics is their potential low cost compared to traditional electronics.[1][2][3] Attractive properties of polymeric conductors include their electrical conductivity (which can be varied by the concentrations of dopants) and comparatively high mechanical flexibility. Challenges to the implementation of organic electronic materials are their inferior thermal stability, high cost, and diverse fabrication issues.
In 1862 Henry Letheby described polyaniline, which was subsequently shown to be electrically conductive. Work on other polymeric organic materials began in earnest in the 1960s. For example in 1963, a derivative of tetraiodopyrrole was shown to exhibit conductivity of 1 S/cm (S = Siemens).[4] In 1977, it was discovered that oxidation enhanced the conductivity of polyacetylene. The 2000 Nobel Prize in Chemistry was awarded to Alan J. Heeger, Alan G. MacDiarmid, and Hideki Shirakawa jointly for their work on polyacetylene and related conductive polymers.[5] Many families of electrically conducting polymers have been identified including polythiophene, polyphenylene sulfide, and others.
J.E. Lilienfeld[6] first proposed the field-effect transistor in 1930, but the first OFET was not reported until 1987, when Koezuka et al. constructed one using Polythiophene[7] which shows extremely high conductivity. Other conductive polymers have been shown to act as semiconductors, and newly synthesized and characterized compounds are reported weekly in prominent research journals. Many review articles exist documenting the development of these materials.[8][9][10][11][12]
In the 1950s, organic molecules were shown to exhibit electrical conductivity. Specifically, the organic compound pyrene was shown to form semiconducting charge-transfer complex salts with halogens.[14] In 1972, researchers found metallic conductivity (conductivity comparable to a metal) in the charge-transfer complex TTF-TCNQ.
In 1990, a polymer light emitting diodes was demonstrated by Bradley, Burroughes, Friend. Moving from molecular to macromolecular materials solved the problems previously encountered with the long-term stability of the organic films and enabled high-quality films to be easily made.[19] In the late 1990's, highly efficient electroluminescent dopants were shown to dramatically increase the light-emitting efficiency of OLEDs[20] These results suggested that electroluminescent materials could displace traditional hot-filament lighting. Subsequent research developed multilayer polymers and the new field of plastic electronics and organic light-emitting diodes (OLED) research and device production grew rapidly.[21]
Conductive organic materials
Organic conductive materials can be grouped into two main classes: polymers and conductive molecular solids and salts. Polycyclic aromatic compounds such as pentacene and rubrene often form semiconducting materials when partially oxidized.
An OLED (organic light-emitting diode) consists of a thin film of organic material that emits light under stimulation by an electric current. A typical OLED consists of an anode, a cathode, OLED organic material and a conductive layer.[23]
OLED organic materials can be divided into two major families: small-molecule-based and polymer-based. Small molecule OLEDs (SM-OLEDs) include tris(8-hydroxyquinolinato)aluminium[17]fluorescent and phosphorescent dyes, and conjugated dendrimers. Fluorescentdyes can be selected according to the desired range of emissionwavelengths; compounds like perylene and rubrene are often used. Devices based on small molecules are usually fabricated by thermalevaporation under vacuum. While this method enables the formation of well-controlled homogeneous film; is hampered by high cost and limited scalability.[24][25] Polymer light-emitting diodes (PLEDs) are generally more efficient than SM-OLEDs. Common polymers used in PLEDs include derivatives of poly(p-phenylene vinylene)[26] and polyfluorene. The emitted color is determined by the structure of the polymer. Compared to thermal evaporation, solution-based methods are more suited to creating films with large dimensions.
An organic field-effect transistor (OFET) is a field-effect transistor utilizing organic molecules or polymers as the active semiconducting layer. A field-effect transistor (FET) is any semiconductor material that utilizes electric field to control the shape of a channel of one type of charge carrier, thereby changing its conductivity. Two major classes of FET are n-type and p-type semiconductor, classified according to the charge type carried. In the case of organic FETs (OFETs), p-type OFET compounds are generally more stable than n-type due to the susceptibility of the latter to oxidative damage.
As for OLEDs, some OFETs are molecular and some are polymer-based system. Rubrene-based OFETs show high carrier mobility of 20–40 cm2/(V·s). Another popular OFET material is Pentacene. Due to its low solubility in most organic solvents, it's difficult to fabricate thin film transistors (TFTs) from pentacene itself using conventional spin-cast or, dip coating methods, but this obstacle can be overcome by using the derivative TIPS-pentacene.
Organic solar cells could cut the cost of solar power compared with conventional solar-cell manufacturing.[27] Silicon thin-film solar cells on flexible substrates allow a significant cost reduction of large-area photovoltaics for several reasons:[28]
The so-called 'roll-to-roll'-deposition on flexible sheets is much easier to realize in terms of technological effort than deposition on fragile and heavy glass sheets.
Transport and installation of lightweight flexible solar cells also saves cost as compared to cells on glass.
Inexpensive polymeric substrates like polyethylene terephthalate (PET) or polycarbonate (PC) have the potential for further cost reduction in photovoltaics. Protomorphous solar cells prove to be a promising concept for efficient and low-cost photovoltaics on cheap and flexible substrates for large-area production as well as small and mobile applications.[28]
One advantage of printed electronics is that different electrical and electronic components can be printed on top of each other, saving space and increasing reliability and sometimes they are all transparent. One ink must not damage another, and low temperature annealing is vital if low-cost flexible materials such as paper and plastic film are to be used. There is much sophisticated engineering and chemistry involved here, with iTi, Pixdro, Asahi Kasei, Merck & Co.|Merck, BASF, HC Starck, Sunew, Hitachi Chemical, and Frontier Carbon Corporation among the leaders.[29]Electronic devices based on organic compounds are now widely used, with many new products under development. Sony reported the first full-color, video-rate, flexible, plastic display made purely of organic materials;[30][31]television screen based on OLED materials; biodegradable electronics based on organic compound and low-cost organic solar cell are also available.
Fabrication methods
Small molecule semiconductors are often insoluble, necessitating deposition via vacuum sublimation. Devices based on conductive polymers can be prepared by solution processing methods. Both solution processing and vacuum based methods produce amorphous and polycrystalline films with variable degree of disorder. "Wet" coating techniques require polymers to be dissolved in a volatile solvent, filtered and deposited onto a substrate. Common examples of solvent-based coating techniques include drop casting, spin-coating, doctor-blading, inkjet printing and screen printing. Spin-coating is a widely used technique for small area thin film production. It may result in a high degree of material loss. The doctor-blade technique results in a minimal material loss and was primarily developed for large area thin film production. Vacuum based thermal deposition of small molecules requires evaporation of molecules from a hot source. The molecules are then transported through vacuum onto a substrate. The process of condensing these molecules on the substrate surface results in thin film formation. Wet coating techniques can in some cases be applied to small molecules depending on their solubility.
Organic solar cells
Organic semiconductor diodes convert light into electricity. Figure to the right shows five commonly used organic photovoltaic materials. Electrons in these organic molecules can be delocalized in a delocalized π orbital with a corresponding π* antibonding orbital. The difference in energy between the π orbital, or highest occupied molecular orbital (HOMO), and π* orbital, or lowest unoccupied molecular orbital (LUMO) is called the band gap of organic photovoltaic materials. Typically, the band gap lies in the range of 1-4eV.[32][33][34]
The difference in the band gap of organic photovoltaic materials leads to different chemical structures and forms of organic solar cells. Different forms of solar cells includes single-layer organic photovoltaic cells, bilayer organic photovoltaic cells and heterojunction photovoltaic cells. However, all three of these types of solar cells share the approach of sandwiching the organic electronic layer between two metallic conductors, typically indium tin oxide.[35]
Organic field-effect transistors
An organic field-effect transistor is a three terminal device (source, drain and gate). The charge carriers move between source and drain, and the gate serves to control the path's conductivity. There are mainly two types of organic field-effect transistor, based on the semiconducting layer's charge transport, namely p-type (such as dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene, DNTT),[36] and n-type (such phenyl C61 butyric acid methyl ester, PCBM).[37] Certain organic semiconductors can also present both p-type and n-type (i.e., ambipolar) characteristics.[38]
Such technology allows for the fabrication of large-area, flexible, low-cost electronics.[39] One of the main advantages is that being mainly a low temperature process compared to CMOS, different type of materials can be utilized. This makes them in turn great candidates for sensing.[40]
Conductive polymers are lighter, more flexible, and less expensive than inorganic conductors. This makes them a desirable alternative in many applications. It also creates the possibility of new applications that would be impossible using copper or silicon.
^Hagen Klauk (Ed.) Organic electronics. More materials and applications 2010, Wiley-VCH, Weinheim. ISBN9783527640218 electronic bk.
^Paolo Samori, Franco Cacialli Functional Supramolecular Architectures: for Organic Electronics and Nanotechnology 2010 Wiley ISBN978-3-527-32611-2
^McNeill, R.; Siudak, R.; Wardlaw, J. H.; Weiss, D. E. (1963). "Electronic Conduction in Polymers. I. The Chemical Structure of Polypyrrole". Aust. J. Chem.16 (6): 1056–1075. doi:10.1071/CH9631056.
^Bernanose, A.; Comte, M.; Vouaux, P. (1953). "A new method of light emission by certain organic compounds". J. Chim. Phys. 50: 64–68. doi:10.1051/jcp/1953500064.
^Bernanose, A.; Vouaux, P. (1953). "Organic electroluminescence type of emission". J. Chim. Phys. 50: 261–263. doi:10.1051/jcp/1953500261.
^D. Chasseau; G. Comberton; J. Gaultier; C. Hauw (1978). "Réexamen de la structure du complexe hexaméthylène-tétrathiafulvalène-tétracyanoquinodiméthane". Acta Crystallographica Section B. 34 (2): 689. doi:10.1107/S0567740878003830.
^Daniel J. Gaspar, Evgueni Polikarpov, ed. (2015). OLED Fundamentals: Materials, Devices, and Processing of Organic Light-Emitting Diodes (1 ed.). CRC Press. ISBN978-1466515185.
^Piromreun, Pongpun; Oh, Hwansool; Shen, Yulong; Malliaras, George G.; Scott, J. Campbell; Brock, Phil J. (2000). "Role of CsF on electron injection into a conjugated polymer". Applied Physics Letters. 77 (15): 2403. Bibcode:2000ApPhL..77.2403P. doi:10.1063/1.1317547.
^Holmes, Russell; Erickson, N.; Lüssem, Björn; Leo, Karl (27 August 2010). "Highly efficient, single-layer organic light-emitting devices based on a graded-composition emissive layer". Applied Physics Letters. 97 (1): 083308. Bibcode:2010ApPhL..97a3308S. doi:10.1063/1.3460285.
^Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; MacKay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B. (1990). "Light-emitting diodes based on conjugated polymers". Nature. 347 (6293): 539. Bibcode:1990Natur.347..539B. doi:10.1038/347539a0. S2CID43158308.
Baracus, B. A.; Weiss, D. E. (1963). "Electronic Conduction in Polymers. II. The Electrochemical Reduction of Polypyrrole at Controlled Potential". Aust. J. Chem. 16 (6): 1076–1089. doi:10.1071/CH9631076.
Bolto, B. A.; McNeill, R.; Weiss, D. E. (1963). "Electronic Conduction in Polymers. III. Electronic Properties of Polypyrrole". Aust. J. Chem. 16 (6): 1090–1103. doi:10.1071/CH9631090.
This is a list of neighbourhoods and outlying communities within the City of Ottawa, Ontario, Canada. In 2001, the old city of Ottawa was amalgamated with the suburbs of Nepean, Kanata, Gloucester, Rockcliffe Park, Vanier and Cumberland, and the rural townships of West Carleton, Osgoode, Rideau and Goulbourn, along with the systems and infrastructure of the Regional Municipality of Ottawa-Carleton, to become one municipality. The city is now organized into 24 wards.[1] CentretownVani...
Halaman ini mengandung konten pornografi. Baca Wikipedia: Kebijakan dan pedoman sebelum memulai Wikipedia tidak disensor. Gambar atau rincian yang terdapat dalam artikel ini mungkin bersifat grafis atau tidak pantas demi memastikan kualitas artikel dan liputan lengkap tentang pokok bahasannya. Untuk informasi selengkapnya lihat halaman Wikipedia penyangkalan isi dan opsi untuk tidak melihat gambar. Baca juga: nasihat untuk orang tua. Seorang pria sedang merangsang vagina seorang wanita dengan...
Kompleks Peluncuran 1Peta Kompleks Peluncuran Stasiun Angkatan Antariksa Cape Canaveral. LC-1 berada pada titik ujung timur.Situs peluncuranStasiun Angkatan Antariksa Cape CanaveralLokasi28°27′54″N 80°32′15″W / 28.46500°N 80.53750°W / 28.46500; -80.53750Koordinat: 28°27′54″N 80°32′15″W / 28.46500°N 80.53750°W / 28.46500; -80.53750Nama pendekLC-1OperatorAngkatan Antariksa Amerika SerikatTotal peluncuran~66Jumlah landasan1I...
Hitoshi YamakawaNama asal山川 均Lahir(1880-12-20)20 Desember 1880Kurashiki, Okayama, JepangMeninggal23 Maret 1958(1958-03-23) (umur 77)KebangsaanJepangKarya terkenalA change of course for the proletarian movementPartai politik Partai Komunis Jepang Partai Sosialis Jepang Gerakan politikMarxisme JepangSuami/istriYamakawa Kikue (m. 1916) Hitoshi Yamakawa (Jepang: 山川 均code: ja is deprecated , Hepburn: Yamakawa Hitoshi, 20 Desember 1880 R...
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada April 2017. Junnosuke SchneiderInformasi pribadiNama lengkap Junnosuke SchneiderTanggal lahir 22 Mei 1977 (umur 46)Tempat lahir Tokyo, JepangPosisi bermain Penjaga gawangKarier senior*Tahun Tim Tampil (Gol)2000 FC Horikoshi 2001-2006 Sagan Tosu 2007-2008 Vegalt...
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Desember 2022. Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Prasas...
Linda CardelliniCardellini pada tahun 2019LahirLinda Edna Cardellini[1]25 Juni 1975 (umur 48)[2]Redwood City, California, A.S [3]PendidikanLoyola Marymount UniversityPekerjaanAktrisTahun aktif1996–sekarangKaryaDaftar lengkapSuami/istriSteven Rodriguez (2009–present)Anak1 Linda Edna Cardellini ({{lahirmati||25|6|1975)[1] adalah seorang aktris Amerika. Di televisi, dia dikenal karena peran utamanya dalam drama remaja Freaks and Geeks (1999–2000),...
Comics character Isamot KolIsamot Kol as depicted in Green Lantern Corps: Recharge #2 (December 2005). Art by Patrick Gleason.Publication informationPublisherDC ComicsFirst appearanceGreen Lantern Corps: Recharge #1 (November 2005)Created byGeoff JohnsDave GibbonsPatrick GleasonIn-story informationFull nameIsamot KolSpeciesLizarkonPlace of originThanagarTeam affiliationsGreen Lantern CorpsAbilitiesPower Ring Isamot Kol is a fictional comic book superhero, an extraterrestrial from the planet T...
Questa voce o sezione sull'argomento Africa non cita le fonti necessarie o quelle presenti sono insufficienti. Commento: Carenza assoluta, diversi pezzi sono da CN Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Costa d'Avorio (dettagli) (dettagli) (FR) Union, Discipline, Travail(IT) Unione, Disciplina, Lavoro Costa d'Avorio - Localizzazione Dati amministrativiNome compl...
Questa voce o sezione sull'argomento pittori italiani non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Questa voce sull'argomento pittori italiani è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Matrimonio mistico di...
Marcellovescovo della Chiesa cattolica Incarichi ricopertiVescovo di Ancira Nato285 circa Nominato vescovoprima del 314 fino al 336 e dal 337 al 339 Deceduto374 circa Manuale Marcello d'Ancira (285 circa – 374 circa) è stato un vescovo e scrittore greco antico di Ancira, in vari periodi tra il 320 e il 353. Indice 1 Vita e principi 2 Note 3 Bibliografia 4 Collegamenti esterni Vita e principi Il suo nome compare nella lista di vescovi partecipanti al concilio di Ancira de...
Christmas song by Paul McCartney Wonderful Christmas Time redirects here. For Diana Ross' 2018 Christmas album reissue, see A Very Special Season. Wonderful ChristmastimeSingle by Paul McCartneyB-sideRudolph the Red-Nosed Reggae (Instrumental)Released16 November 1979 (1979-11-16)Recorded30 August 1979StudioLower Gate Farm (Sussex)Genre Christmas synth-pop Length3:45Label Parlophone Columbia Songwriter(s)Paul McCartneyProducer(s)Paul McCartneyPaul McCartney singles chronology Ea...
East Slavic ethnic group This article is about an ethnicity in the Eastern Europe. For surname connected to it, see Polishchuk (surname). You can help expand this article with text translated from the corresponding article in Russian. (February 2019) Click [show] for important translation instructions. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accura...
For other places with the same name, see Aabenraa (disambiguation). Town in Southern Denmark, DenmarkAabenraa Affenråe (South Jutlandic)Apenrade (German)TownAabenraa in mid-July 2006 Coat of armsAabenraaLocation in DenmarkShow map of DenmarkAabenraaAabenraa (Region of Southern Denmark)Show map of Region of Southern DenmarkCoordinates: 55°2′40″N 9°25′5″E / 55.04444°N 9.41806°E / 55.04444; 9.41806CountryDenmarkRegionSouthern DenmarkMunicipalityAabenraaA...
Municipality in Mexico State, MexicoSan Felipe del ProgresoMunicipalitySan Felipe del ProgresoCoordinates: 19°42′45″N 99°57′04″W / 19.71250°N 99.95111°W / 19.71250; -99.95111Country MexicoStateMexico StateMunicipalitySan Felipe del ProgresoMunicipal seatSan Felipe del ProgresoFounded1547Municipal Status1826Government • Municipal PresidentEduardo Zarzosa Sanchez (2006-2009) APMElevation2,570 m (8,430 ft)Population (2005)Munici...
Local govt election in Northern Ireland Main article: Northern Ireland local elections, 2001 2001 Cookstown District Council election ← 1997 7 June 2001 (2001-06-07) 2005 → All 16 seats to Cookstown District Council9 seats needed for a majority First party Second party Third party Party Sinn Féin SDLP Ulster Unionist Seats won 6 4 3 Seat change 1 0 1 Fourth party Fifth party Sixth party Party DUP Independent Ind. Unio...
This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Turkmenistan at the 2024 Summer Olympics – news · newspapers · books · scholar · JSTOR (May 2024) Sporting event delegationTurkmenistan at the2024 Summer OlympicsIOC codeTKMNOCNational Olympic Committee of Turkmenistanin Paris, France26 July ...
Questa voce sull'argomento società di pallacanestro tedesche è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. U.S.C. HeidelbergPallacanestro Segni distintiviUniformi di gara Casa Trasferta Colori sociali Bianco, nero e arancione Dati societariCittàHeidelberg Nazione Germania ConfederazioneFIBA Europe FederazioneDBB CampionatoBasketball-Bundesliga Fondazione1899 DenominazioneU.S.C. Heidelberg(1899-presente) Allenatore Ingo Freyer ImpiantoSNP Dome...
Former railway station in England Mill Hill (The Hale)The Hale station and Mill Hill station, 1913Mill Hill (The Hale)Location of Mill Hill (The Hale) in Greater LondonLocationMill HillLocal authorityBarnetOwnerGreat Northern RailwayNumber of platforms1Key dates1906 (1906)Opened (Passengers)1910Opened (Goods)1939 (1939)Closed (Passengers)1964Closed (Goods)Other informationCoordinates51°36′43″N 0°14′57″W / 51.6119°N 0.2492°W / 51.6119; -0.2492 Lond...