An orexin receptor antagonist, or orexin antagonist, is a drug that inhibits the effect of orexin by acting as a receptor antagonist of one (selective orexin receptor antagonist or SORA) or both (dual orexin receptor antagonis or DORA) of the orexin receptors, OX1 and OX2.[1] Medical applications include treatment of sleep disorders such as insomnia.[2][3]
Examples
Marketed
Daridorexant (nemorexant; Quviviq) – dual OX1 and OX2 antagonist – approved for insomnia in January 2022,[4] formerly under development for sleep apnea[5] – half-life 8 hours[6]
Lemborexant (Dayvigo) – dual OX1 and OX2 antagonist – approved for insomnia in December 2019[4] and released June 1 2020, under development for circadian rhythm sleep disorders, chronic obstructive pulmonary disease, and sleep apnea – half-life 17–55 hours[7][8]
Suvorexant (Belsomra) – dual OX1 and OX2 antagonist – approved for insomnia in August 2014,[4] under development for delirium[9][10] – half-life 12 hours[7][11]
Under development
Fazamorexant (YZJ-1139) – dual OX1 and OX2 antagonist – under development for insomnia, up to phase 3 [12]
Nivasorexant (ACT-539313) – selective OX1 antagonist – under development for binge eating disorder and previously for anxiety disorders, up to phase 2 – half-life 3–7 hours [13]
Seltorexant (MIN-202, JNJ-42847922, JNJ-922) – selective OX2 antagonist – under development for major depressive disorder, insomnia, and sleep apnea, up to phase 3 – half-life 2–3 hours [14]
Tebideutorexant (JNJ-61393215, JNJ-3215) – selective OX1 antagonist – under development for major depressive disorder, no development reported for anxiety disorders and panic disorder, up to phase 2[15]
Vornorexant (ORN-0829, TS-142) – dual OX1 and OX2 antagonist – under development for insomnia and sleep apnea, up to phase 3 in Japan – half-life 1.5–3 hours[16]
Rates of somnolence or fatigue with orexin receptor antagonists in clinical trials were 7% (vs. 3% with placebo) for suvorexant 15 to 20mg,[26] 7 to 10% (vs. 1.3% for placebo) for lemborexant 5 to 10mg,[27] and 5 to 6% (vs. 4% with placebo) for daridorexant 25 to 50mg.[28]
Contraindications
Narcolepsy, a neurological disorder caused by orexin deficiency, is a contraindication to the use of orexin antagonists.[29]
Pharmacology
Pharmacokinetics
The elimination half-lives of clinically used orexin receptor antagonists are 12 hours for suvorexant, about 17 to 19 hours ("effective" half-life) or 55 hours (terminal elimination half-life) for lemborexant, and 6 to 10 hours for daridorexant.[8] The elimination half-lives of investigational orexin receptor antagonists are 2 to 3 hours for seltorexant and about 1.5 to 3 hours for vornorexant.[8][30]
The pharmacokinetics of suvorexant are significantly affected by age, sex, and other factors, leading to increased blood concentrations in female, obese, and older patients.[7] These factors do not significantly affect the pharmacokinetics of lemborexant[7] or daridorexant.[31]
All three marketed orexin antagonists do not need to be dose adjusted in patients with reduced renal function, as the pharmacokinetic profiles of these medications are not significantly affected.[32][31][33] In patients with moderate to severe hepatic impairment, dose adjustments of these medications may be necessary.[34]
^Roecker AJ, Coleman PJ (2008). "Orexin receptor antagonists: medicinal chemistry and therapeutic potential". Current Topics in Medicinal Chemistry. 8 (11): 977–987. doi:10.2174/156802608784936746. PMID18673167.
^Cao M, Guilleminault C (April 2011). "Hypocretin and its emerging role as a target for treatment of sleep disorders". Current Neurology and Neuroscience Reports. 11 (2): 227–234. doi:10.1007/s11910-010-0172-9. PMID21170610. S2CID42562238.
^ abcPreskorn SH (January 2023). "Comparative Pharmacology of the 3 Marketed Dual Orexin Antagonists-Daridorexant, Lemborexant, and Suvorexant-Part 2. Principal Drug Metabolizing Enzyme, Drug-Drug Interactions, and Effects of Liver and Renal Impairment on Metabolism". Journal of Psychiatric Practice. 29 (1): 38–41. doi:10.1097/PRA.0000000000000690. PMID36649550. S2CID255944492.
^ abTian Y, Qin Z, Han Y (March 2022). "Suvorexant with or without ramelteon to prevent delirium: a systematic review and meta-analysis". Psychogeriatrics. 22 (2): 259–268. doi:10.1111/psyg.12792. PMID34881812. S2CID245076331.
^Rodgers RJ, Halford JC, Nunes de Souza RL, Canto de Souza AL, Piper DC, Arch JR, et al. (April 2001). "SB-334867, a selective orexin-1 receptor antagonist, enhances behavioural satiety and blocks the hyperphagic effect of orexin-A in rats". The European Journal of Neuroscience. 13 (7): 1444–1452. doi:10.1046/j.0953-816x.2001.01518.x. PMID11298806. S2CID24935644.
^ abXue T, Wu X, Chen S, Yang Y, Yan Z, Song Z, et al. (February 2022). "The efficacy and safety of dual orexin receptor antagonists in primary insomnia: A systematic review and network meta-analysis". Sleep Medicine Reviews. 61: 101573. doi:10.1016/j.smrv.2021.101573. PMID34902823. S2CID244689706.
^ abKuriyama A, Tabata H (October 2017). "Suvorexant for the treatment of primary insomnia: A systematic review and meta-analysis". Sleep Medicine Reviews. 35: 1–7. doi:10.1016/j.smrv.2016.09.004. PMID28365447.
^ abKishi T, Nomura I, Matsuda Y, Sakuma K, Okuya M, Ikuta T, et al. (September 2020). "Lemborexant vs suvorexant for insomnia: A systematic review and network meta-analysis". Journal of Psychiatric Research. 128: 68–74. doi:10.1016/j.jpsychires.2020.05.025. PMID32531478. S2CID219620600.
^Preskorn SH (January 2023). "Comparative Pharmacology of the 3 Marketed Dual Orexin Antagonists-Daridorexant, Lemborexant, and Suvorexant-Part 2. Principal Drug Metabolizing Enzyme, Drug-Drug Interactions, and Effects of Liver and Renal Impairment on Metabolism". Journal of Psychiatric Practice. 29 (1): 38–41. doi:10.1097/PRA.0000000000000690. PMID36649550. S2CID255944492.
^Muehlan C, Vaillant C, Zenklusen I, Kraehenbuehl S, Dingemanse J (November 2020). "Clinical pharmacology, efficacy, and safety of orexin receptor antagonists for the treatment of insomnia disorders". Expert Opinion on Drug Metabolism & Toxicology. 16 (11): 1063–1078. doi:10.1080/17425255.2020.1817380. PMID32901578. S2CID221572078.
^ abJacobson LH, Hoyer D, de Lecea L (May 2022). "Hypocretins (orexins): The ultimate translational neuropeptides". Journal of Internal Medicine. 291 (5): 533–556. doi:10.1111/joim.13406. PMID35043499. S2CID248119793.
^Shariq AS, Rosenblat JD, Alageel A, Mansur RB, Rong C, Ho RC, et al. (June 2019). "Evaluating the role of orexins in the pathophysiology and treatment of depression: A comprehensive review". Progress in Neuro-Psychopharmacology & Biological Psychiatry. 92: 1–7. doi:10.1016/j.pnpbp.2018.12.008. PMID30576764. S2CID56482209.
^Clinical trial number NCT02669030 for "A Six Week, Randomized, Double-Blind Placebo-Controlled, Suvorexant Augmentation Study of Antidepressant Treatment of Major Depressive Disorder With Residual Insomnia" at ClinicalTrials.gov