Nowhere dense set

In mathematics, a subset of a topological space is called nowhere dense[1][2] or rare[3] if its closure has empty interior. In a very loose sense, it is a set whose elements are not tightly clustered (as defined by the topology on the space) anywhere. For example, the integers are nowhere dense among the reals, whereas the interval (0, 1) is not nowhere dense.

A countable union of nowhere dense sets is called a meagre set. Meagre sets play an important role in the formulation of the Baire category theorem, which is used in the proof of several fundamental results of functional analysis.

Definition

Density nowhere can be characterized in different (but equivalent) ways. The simplest definition is the one from density:

A subset of a topological space is said to be dense in another set if the intersection is a dense subset of is nowhere dense or rare in if is not dense in any nonempty open subset of

Expanding out the negation of density, it is equivalent that each nonempty open set contains a nonempty open subset disjoint from [4] It suffices to check either condition on a base for the topology on In particular, density nowhere in is often described as being dense in no open interval.[5][6]

Definition by closure

The second definition above is equivalent to requiring that the closure, cannot contain any nonempty open set.[7] This is the same as saying that the interior of the closure of is empty; that is,

[8][9]

Alternatively, the complement of the closure must be a dense subset of [4][8] in other words, the exterior of is dense in

Properties

The notion of nowhere dense set is always relative to a given surrounding space. Suppose where has the subspace topology induced from The set may be nowhere dense in but not nowhere dense in Notably, a set is always dense in its own subspace topology. So if is nonempty, it will not be nowhere dense as a subset of itself. However the following results hold:[10][11]

  • If is nowhere dense in then is nowhere dense in
  • If is open in , then is nowhere dense in if and only if is nowhere dense in
  • If is dense in , then is nowhere dense in if and only if is nowhere dense in

A set is nowhere dense if and only if its closure is.[1]

Every subset of a nowhere dense set is nowhere dense, and a finite union of nowhere dense sets is nowhere dense.[12][13] Thus the nowhere dense sets form an ideal of sets, a suitable notion of negligible set. In general they do not form a 𝜎-ideal, as meager sets, which are the countable unions of nowhere dense sets, need not be nowhere dense. For example, the set is not nowhere dense in

The boundary of every open set and of every closed set is closed and nowhere dense.[14][2] A closed set is nowhere dense if and only if it is equal to its boundary,[14] if and only if it is equal to the boundary of some open set[2] (for example the open set can be taken as the complement of the set). An arbitrary set is nowhere dense if and only if it is a subset of the boundary of some open set (for example the open set can be taken as the exterior of ).

Examples

  • The set and its closure are nowhere dense in since the closure has empty interior.
  • The Cantor set is an uncountable nowhere dense set in
  • viewed as the horizontal axis in the Euclidean plane is nowhere dense in
  • is nowhere dense in but the rationals are not (they are dense everywhere).
  • is not nowhere dense in : it is dense in the open interval and in particular the interior of its closure is
  • The empty set is nowhere dense. In a discrete space, the empty set is the only nowhere dense set.[15]
  • In a T1 space, any singleton set that is not an isolated point is nowhere dense.
  • A vector subspace of a topological vector space is either dense or nowhere dense.[16]

Nowhere dense sets with positive measure

A nowhere dense set is not necessarily negligible in every sense. For example, if is the unit interval not only is it possible to have a dense set of Lebesgue measure zero (such as the set of rationals), but it is also possible to have a nowhere dense set with positive measure. One such example is the Smith–Volterra–Cantor set.

For another example (a variant of the Cantor set), remove from all dyadic fractions, i.e. fractions of the form in lowest terms for positive integers and the intervals around them: Since for each this removes intervals adding up to at most the nowhere dense set remaining after all such intervals have been removed has measure of at least (in fact just over because of overlaps[17]) and so in a sense represents the majority of the ambient space This set is nowhere dense, as it is closed and has an empty interior: any interval is not contained in the set since the dyadic fractions in have been removed.

Generalizing this method, one can construct in the unit interval nowhere dense sets of any measure less than although the measure cannot be exactly 1 (because otherwise the complement of its closure would be a nonempty open set with measure zero, which is impossible).[18]

For another simpler example, if is any dense open subset of having finite Lebesgue measure then is necessarily a closed subset of having infinite Lebesgue measure that is also nowhere dense in (because its topological interior is empty). Such a dense open subset of finite Lebesgue measure is commonly constructed when proving that the Lebesgue measure of the rational numbers is This may be done by choosing any bijection (it actually suffices for to merely be a surjection) and for every letting (here, the Minkowski sum notation was used to simplify the description of the intervals). The open subset is dense in because this is true of its subset and its Lebesgue measure is no greater than Taking the union of closed, rather than open, intervals produces the F𝜎-subset that satisfies Because is a subset of the nowhere dense set it is also nowhere dense in Because is a Baire space, the set is a dense subset of (which means that like its subset cannot possibly be nowhere dense in ) with Lebesgue measure that is also a nonmeager subset of (that is, is of the second category in ), which makes a comeager subset of whose interior in is also empty; however, is nowhere dense in if and only if its closure in has empty interior. The subset in this example can be replaced by any countable dense subset of and furthermore, even the set can be replaced by for any integer

See also

References

  1. ^ a b Bourbaki 1989, ch. IX, section 5.1.
  2. ^ a b c Willard 2004, Problem 4G.
  3. ^ Narici & Beckenstein 2011, section 11.5, pp. 387-389.
  4. ^ a b Fremlin 2002, 3A3F(a).
  5. ^ Oxtoby, John C. (1980). Measure and Category (2nd ed.). New York: Springer-Verlag. pp. 1–2. ISBN 0-387-90508-1. A set is nowhere dense if it is dense in no interval; although note that Oxtoby later gives the interior-of-closure definition on page 40.
  6. ^ Natanson, Israel P. (1955). Teoria functsiy veshchestvennoy peremennoy [Theory of functions of a real variable]. Vol. I (Chapters 1-9). Translated by Boron, Leo F. New York: Frederick Ungar. p. 88. hdl:2027/mdp.49015000681685. LCCN 54-7420.
  7. ^ Steen, Lynn Arthur; Seebach Jr., J. Arthur (1995). Counterexamples in Topology (Dover republication of Springer-Verlag 1978 ed.). New York: Dover. p. 7. ISBN 978-0-486-68735-3. A subset of is said to be nowhere dense in if no nonempty open set of is contained in
  8. ^ a b Gamelin, Theodore W. (1999). Introduction to Topology (2nd ed.). Mineola: Dover. pp. 36–37. ISBN 0-486-40680-6 – via ProQuest ebook Central.
  9. ^ Rudin 1991, p. 41.
  10. ^ Narici & Beckenstein 2011, Theorem 11.5.4.
  11. ^ Haworth & McCoy 1977, Proposition 1.3.
  12. ^ Fremlin 2002, 3A3F(c).
  13. ^ Willard 2004, Problem 25A.
  14. ^ a b Narici & Beckenstein 2011, Example 11.5.3(e).
  15. ^ Narici & Beckenstein 2011, Example 11.5.3(a).
  16. ^ Narici & Beckenstein 2011, Example 11.5.3(f).
  17. ^ "Some nowhere dense sets with positive measure and a strictly monotonic continuous function with a dense set of points with zero derivative".
  18. ^ Folland, G. B. (1984). Real analysis: modern techniques and their applications. New York: John Wiley & Sons. p. 41. hdl:2027/mdp.49015000929258. ISBN 0-471-80958-6.

Bibliography

Read other articles:

Television channel TévaCountryFranceBroadcast areaFranceHeadquartersNeuilly-sur-Seine, FranceProgrammingLanguage(s)FrenchPicture format576i (16:9 SDTV)1080i (HDTV)OwnershipOwnerM6 GroupSister channelsM6Gulli6terParis PremièreW9M6 MusicSérie ClubHistoryLaunched6 October 1996; 27 years ago (1996-10-06)LinksWebsitewww.6play.fr/teva Téva is a French general-interest television channel, privately owned, with a female and family focus, belonging to the M6 Group. Téva has been...

 

Artikel ini bukan mengenai Ande Ande Lumut. Ande-Ande LumutGenre Drama Roman PembuatMD EntertainmentDitulis olehHilman HariwijayaSkenarioHilman HariwijayaSutradara Mukta Dhond Anto Agam Pemeran Jonathan Frizzy Anneke Jodi Vicky Nitinegoro Mathias Muchus Silvana Herman Adrian Maulana Eksanti Kissinger Mae Bemby Putuanda Tasman Taher Ivanka Suwandi Ricky Perdana Fitri Ayu Maresa Priscilla Clara Lia Waode Fathya Artha Utami Ronald Gustav Lulu Zakaria Penggubah lagu temaChossy PratamaLagu pembuka...

 

Walter Zenga Informasi pribadiNama lengkap Walter ZengaTanggal lahir 28 April 1960 (umur 63)Tempat lahir Milan, ItaliaPosisi bermain KiperInformasi klubKlub saat ini Palermo (Pelatih)Karier junior1977–1978 InternazionaleKarier senior*Tahun Tim Tampil (Gol) 1978–19791979–19801980–19821982–19941994–19961996–19971997–1999 SalernitanaSavonaSambenedetteseInter MilanSampdoriaPadovaNew England RevolutionTotal 003 (0)023 (0)067 (0)328 (0)041 (0)021 (0)047 (0)530 (0) Tim nasional...

Disambiguazione – Boncompagni Ludovisi rimanda qui. Se stai cercando altri significati, vedi Boncompagni Ludovisi (disambigua). BoncompagniDi rosso, al drago d'oro spiegato, reciso e sanguinanteStato Stato Pontificio Ducato di Sora Principato di Piombino Regno di Napoli Regno d'Italia Repubblica Italiana Titoli Papa[N 1] (non ereditario) Duca di Sora(1579–1796) Principe di Piombino(1701–1707)(1733–1801) Principe di Venosa Principe del Sacro Romano Impero Duca di Arce ...

 

Sabine Land is located on the eastern side of Spitsbergen. Sabine Land (/ˈseɪbɪn/ SAY-bin) is a land area on the east coast of Spitsbergen, Svalbard. It is named after explorer General Sir Edward Sabine.[1] Among the glaciers in the area is the 250-square-kilometer (97 sq mi) Nordmannsfonna glacier.[2] References ^ Sabine Land. Norwegian Polar Institute. Retrieved 16 April 2016. ^ Hagen, Jon Ove. Nordmannsfonna. Store norske leksikon (in Norwegian). Oslo: Kunnska...

 

OptatissimusPoster filmSutradaraDirmawan HattaProduserHeru WinantoDitulis olehDirmawan HattaPemeranRio DewantoNadhira UlyaLandung SimatupangGunawan MaryantoPenata musikRizky SasonoSinematograferJoseph FofidPenyuntingAndhy PulungPerusahaanproduksiFlix PicturesTanggal rilis23 Mei 2013 (2013-05-23)Durasi116 menitNegaraIndonesia Optatissimus adalah film drama Indonesia tahun 2013 yang disutradarai oleh Dirmawan Hatta. Film ini dibintangi oleh Rio Dewanto, Nadhira Ulya, dan Landung Sima...

This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Zvolen District – news · newspapers · books · scholar · JSTOR (October 2009) (Learn how and when to remove this template message) District in Banská Bystrica Region, SlovakiaZvolen DistrictDistrictCountrySlovakiaRegion (kraj)Banská Bystrica RegionCultural regionPodpoľanie...

 

First king of the Tuatha Dé Danann in Irish mythology Nuada redirects here. For the given name, see Nuada (given name). The Tandragee Idol, which is believed to represent Nuada[1] In Irish mythology, Nuada or Nuadu (modern spelling: Nuadha), known by the epithet Airgetlám (Airgeadlámh, meaning silver hand/arm), was the first king of the Tuatha Dé Danann. He is also called Nechtan, Nuadu Necht and Elcmar, and is the husband of Boann.[1] He is mostly known from the tale in w...

 

Guerre Cambodge - Viêt Nam Informations générales Date 25 décembre 1978 - 7 janvier 1979 Lieu Cambodge, frontière vietnamienne Issue Victoire du Viêt Nam Les Khmers rouges sont chassés du pouvoir Mise en place de la république populaire du Kampuchéa Guerre sino-vietnamienne Poursuite du conflit au Cambodge Belligérants Viêt NamSoutenu par : Union soviétique Cuba Allemagne de l'Est Pologne Bulgarie Hongrie Tchécoslovaquie Inde Mongolie Laos Kampuchéa dé...

Villasaltocomune(IT) Villasalto(SC) Biddesàtu Villasalto – Veduta LocalizzazioneStato Italia Regione Sardegna ProvinciaSud Sardegna AmministrazioneSindacoLeonardo Usai (lista civica) dall'11-10-2021 TerritorioCoordinate39°29′36.28″N 9°23′24.18″E / 39.493411°N 9.390049°E39.493411; 9.390049Coordinate: 39°29′36.28″N 9°23′24.18″E / 39.493411°N 9.390049°E39.493411; 9.390049 Altitudine502 m s.l.m. Superficie130,36...

 

Trinidad and Tobago musician (c. 1910–1983) Winifred AtwellBackground informationBirth nameUna Winifred AtwellBorn(1914-02-27)27 February 1914[1] (disputed)Tunapuna, Trinidad and TobagoDied28 February 1983Sydney, AustraliaGenresBoogie-woogie, ragtime, classicalInstrument(s)PianoYears active1946–1980LabelsDecca Records, Philips Records, RCA Records, CBS RecordsMusical artist Una Winifred Atwell (27 February or 27 April[2] 1910 or 1914[nb 1] – 28 February 1983) was...

 

土库曼斯坦总统土库曼斯坦国徽土库曼斯坦总统旗現任谢尔达尔·别尔德穆哈梅多夫自2022年3月19日官邸阿什哈巴德总统府(Oguzkhan Presidential Palace)機關所在地阿什哈巴德任命者直接选举任期7年,可连选连任首任萨帕尔穆拉特·尼亚佐夫设立1991年10月27日 土库曼斯坦土库曼斯坦政府与政治 国家政府 土库曼斯坦宪法 国旗 国徽 国歌 立法機關(英语:National Council of Turkmenistan) ...

Sports governing body IFAF OceaniaMembership 4PresidentMichael RyanWebsitewww.americanfootball.sport IFAF Oceania is the governing body of American football in Oceania. It is a member of the International Federation of American Football. IFAF Oceania replaced the Oceania Federation of American Football (OFAF) in 2012.[1][2] Members  American Samoa  Australia  French Polynesia  Guam  New Caledonia  New Zealand  Papua New Guinea  Tonga Com...

 

43°14′54″N 79°04′27″W / 43.248370°N 79.074044°W / 43.248370; -79.074044 Butler's BarracksButler's BarracksLocationOntario, CanadaBuilt1778Original useHome of Loyalist military officer John ButlerGoverning bodyParks CanadaWebsiteButler's Barracks National Historic Site of Canada Butler's Barracks was the home of Loyalist military officer John Butler (1728–1796), in what was then Newark, Upper Canada; present day Niagara-on-the-Lake, Ontario. Butler is mos...

 

United States forest in Oregon and California Rogue River–Siskiyou National ForestJeffrey pine on a high ridgeLocationOregon and California, United States Coos, Curry, Douglas, Jackson, Josephine, and Klamath counties in Oregon Del Norte and Siskiyou counties in California[1]Nearest cityMedford, OregonCoordinates42°03′45″N 123°56′15″W / 42.06250°N 123.93750°W / 42.06250; -123.93750Area1,723,179 acres (697,346 ha)[2]Established200...

جزء من سلسلة مقالات سياسة الصومالالصومال الدستور الدستور حقوق الإنسان السلطة التنفيذية الرئيس حسن شيخ محمود مجلس الوزراء حمزة عبدي بري السلطة التشريعية البرلمان آدم محمد نور مدوبي السلطة القضائية القضاء الإنتخابات الإنتخابات الأخيرة في الصومال الانتخابات الرئاسية الص�...

 

Bagian dari seri tentangIslam Sunni Rukun iman Tauhid Malaikat Nabi dan Rasul Kitab Hari Akhir Qada dan Qadar Rukun Islam Syahadat Salat Zakat Puasa Haji Khulafaur Rasyidin Abu Bakar Umar bin Khattab Utsman bin 'Affan Ali bin Abi Thalib Mazhab fikih Hanafiyah Malikiyah Syafi'iyah Hanabilah Lainnya Zhahiri Auza'i Tsauri Laitsi Jariri Mazhab akidah Ahli Hadis Atsariyah Ahlur Ra’yi Asy'ariyah Maturidiyah Dalam konteks Ihsan Wajd dan Kasyf (Sufi) Gerakan Barelwi Deobandi Modernisme Islam Modern...

 

Component city in Laguna, Philippines Component city in Calabarzon, PhilippinesCalambaComponent cityCity of CalambaFrom top, left to right: Jose Rizal Shrine, Calamba Giant Clay Pot, Skyline, St. John the Baptist Parish Church, and Calamba City Hall. FlagSealNicknames:  The Premier City of Growth, Leisure and National Pride Hometown of Jose Rizal Spring Resort Capital of the Philippines[1] Motto(s): Mabuhay ang Calamba!(Long live Calamba!.)Anthem: Calamba HymnMap of Laguna w...

Tugu LilinNama lainTugu Kebangkitan Nasional [2]Informasi umumJenisTuguAlamatJalan Dr. Wahidin no. 33 ,Kelurahan Penumping, Kecamatan Laweyan [1]KotaSurakartaNegara IndonesiaMulai dibangunDesember 1933 [2]DibukaOktober 1934 [2]Desain dan konstruksiArsitekIr. Soetedjo [2] Tugu Lilin adalah sebuah tugu yang berada di Kota Surakarta.Tugu ini dibangun dengantujuan yaitu untuk memperingati 25 tahun lahirnya hari kebangkitan nasional. Penghitungan ini dimulai...

 

Catholic university in St. Paul and Minneapolis, Minnesota University of St. ThomasFormer namesCollege of St. Thomas (1885–1990)MottoAll for the common goodTypePrivate universityEstablished1885; 139 years ago (1885)[1]Religious affiliationCatholic ChurchAcademic affiliations ACCUICUSTANAICU ACTCSpace-grant Endowment$874.35 million (2023)[2]Budget$374 million (2016)[3]PresidentRobert K. Vischer[4]ProvostEddy M. RojasAcademic staff704 ...