Nearest neighbor search

Nearest neighbor search (NNS), as a form of proximity search, is the optimization problem of finding the point in a given set that is closest (or most similar) to a given point. Closeness is typically expressed in terms of a dissimilarity function: the less similar the objects, the larger the function values.

Formally, the nearest-neighbor (NN) search problem is defined as follows: given a set S of points in a space M and a query point q ∈ M, find the closest point in S to q. Donald Knuth in vol. 3 of The Art of Computer Programming (1973) called it the post-office problem, referring to an application of assigning to a residence the nearest post office. A direct generalization of this problem is a k-NN search, where we need to find the k closest points.

Most commonly M is a metric space and dissimilarity is expressed as a distance metric, which is symmetric and satisfies the triangle inequality. Even more common, M is taken to be the d-dimensional vector space where dissimilarity is measured using the Euclidean distance, Manhattan distance or other distance metric. However, the dissimilarity function can be arbitrary. One example is asymmetric Bregman divergence, for which the triangle inequality does not hold.[1]

Applications

The nearest neighbor search problem arises in numerous fields of application, including:

Methods

Various solutions to the NNS problem have been proposed. The quality and usefulness of the algorithms are determined by the time complexity of queries as well as the space complexity of any search data structures that must be maintained. The informal observation usually referred to as the curse of dimensionality states that there is no general-purpose exact solution for NNS in high-dimensional Euclidean space using polynomial preprocessing and polylogarithmic search time.

Exact methods

The simplest solution to the NNS problem is to compute the distance from the query point to every other point in the database, keeping track of the "best so far". This algorithm, sometimes referred to as the naive approach, has a running time of O(dN), where N is the cardinality of S and d is the dimensionality of S. There are no search data structures to maintain, so the linear search has no space complexity beyond the storage of the database. Naive search can, on average, outperform space partitioning approaches on higher dimensional spaces.[5]

The absolute distance is not required for distance comparison, only the relative distance. In geometric coordinate systems the distance calculation can be sped up considerably by omitting the square root calculation from the distance calculation between two coordinates. The distance comparison will still yield identical results.

Space partitioning

Since the 1970s, the branch and bound methodology has been applied to the problem. In the case of Euclidean space, this approach encompasses spatial index or spatial access methods. Several space-partitioning methods have been developed for solving the NNS problem. Perhaps the simplest is the k-d tree, which iteratively bisects the search space into two regions containing half of the points of the parent region. Queries are performed via traversal of the tree from the root to a leaf by evaluating the query point at each split. Depending on the distance specified in the query, neighboring branches that might contain hits may also need to be evaluated. For constant dimension query time, average complexity is O(log N)[6] in the case of randomly distributed points, worst case complexity is O(kN^(1-1/k))[7] Alternatively the R-tree data structure was designed to support nearest neighbor search in dynamic context, as it has efficient algorithms for insertions and deletions such as the R* tree.[8] R-trees can yield nearest neighbors not only for Euclidean distance, but can also be used with other distances.

In the case of general metric space, the branch-and-bound approach is known as the metric tree approach. Particular examples include vp-tree and BK-tree methods.

Using a set of points taken from a 3-dimensional space and put into a BSP tree, and given a query point taken from the same space, a possible solution to the problem of finding the nearest point-cloud point to the query point is given in the following description of an algorithm.

(Strictly speaking, no such point may exist, because it may not be unique. But in practice, usually we only care about finding any one of the subset of all point-cloud points that exist at the shortest distance to a given query point.) The idea is, for each branching of the tree, guess that the closest point in the cloud resides in the half-space containing the query point. This may not be the case, but it is a good heuristic. After having recursively gone through all the trouble of solving the problem for the guessed half-space, now compare the distance returned by this result with the shortest distance from the query point to the partitioning plane. This latter distance is that between the query point and the closest possible point that could exist in the half-space not searched. If this distance is greater than that returned in the earlier result, then clearly there is no need to search the other half-space. If there is such a need, then you must go through the trouble of solving the problem for the other half space, and then compare its result to the former result, and then return the proper result. The performance of this algorithm is nearer to logarithmic time than linear time when the query point is near the cloud, because as the distance between the query point and the closest point-cloud point nears zero, the algorithm needs only perform a look-up using the query point as a key to get the correct result.

Approximation methods

An approximate nearest neighbor search algorithm is allowed to return points whose distance from the query is at most times the distance from the query to its nearest points. The appeal of this approach is that, in many cases, an approximate nearest neighbor is almost as good as the exact one. In particular, if the distance measure accurately captures the notion of user quality, then small differences in the distance should not matter.[9]

Greedy search in proximity neighborhood graphs

Proximity graph methods (such as navigable small world graphs[10] and HNSW[11][12]) are considered the current state-of-the-art for the approximate nearest neighbors search.

The methods are based on greedy traversing in proximity neighborhood graphs in which every point is uniquely associated with vertex . The search for the nearest neighbors to a query q in the set S takes the form of searching for the vertex in the graph . The basic algorithm – greedy search – works as follows: search starts from an enter-point vertex by computing the distances from the query q to each vertex of its neighborhood , and then finds a vertex with the minimal distance value. If the distance value between the query and the selected vertex is smaller than the one between the query and the current element, then the algorithm moves to the selected vertex, and it becomes new enter-point. The algorithm stops when it reaches a local minimum: a vertex whose neighborhood does not contain a vertex that is closer to the query than the vertex itself.

The idea of proximity neighborhood graphs was exploited in multiple publications, including the seminal paper by Arya and Mount,[13] in the VoroNet system for the plane,[14] in the RayNet system for the ,[15] and in the Navigable Small World,[10] Metrized Small World[16] and HNSW[11][12] algorithms for the general case of spaces with a distance function. These works were preceded by a pioneering paper by Toussaint, in which he introduced the concept of a relative neighborhood graph.[17]

Locality sensitive hashing

Locality sensitive hashing (LSH) is a technique for grouping points in space into 'buckets' based on some distance metric operating on the points. Points that are close to each other under the chosen metric are mapped to the same bucket with high probability.[18]

Nearest neighbor search in spaces with small intrinsic dimension

The cover tree has a theoretical bound that is based on the dataset's doubling constant. The bound on search time is O(c12 log n) where c is the expansion constant of the dataset.

In the special case where the data is a dense 3D map of geometric points, the projection geometry of the sensing technique can be used to dramatically simplify the search problem. This approach requires that the 3D data is organized by a projection to a two-dimensional grid and assumes that the data is spatially smooth across neighboring grid cells with the exception of object boundaries. These assumptions are valid when dealing with 3D sensor data in applications such as surveying, robotics and stereo vision but may not hold for unorganized data in general. In practice this technique has an average search time of O(1) or O(K) for the k-nearest neighbor problem when applied to real world stereo vision data.[4]

Vector approximation files

In high-dimensional spaces, tree indexing structures become useless because an increasing percentage of the nodes need to be examined anyway. To speed up linear search, a compressed version of the feature vectors stored in RAM is used to prefilter the datasets in a first run. The final candidates are determined in a second stage using the uncompressed data from the disk for distance calculation.[19]

The VA-file approach is a special case of a compression based search, where each feature component is compressed uniformly and independently. The optimal compression technique in multidimensional spaces is Vector Quantization (VQ), implemented through clustering. The database is clustered and the most "promising" clusters are retrieved. Huge gains over VA-File, tree-based indexes and sequential scan have been observed.[20][21] Also note the parallels between clustering and LSH.

Variants

There are numerous variants of the NNS problem and the two most well-known are the k-nearest neighbor search and the ε-approximate nearest neighbor search.

k-nearest neighbors

k-nearest neighbor search identifies the top k nearest neighbors to the query. This technique is commonly used in predictive analytics to estimate or classify a point based on the consensus of its neighbors. k-nearest neighbor graphs are graphs in which every point is connected to its k nearest neighbors.

Approximate nearest neighbor

In some applications it may be acceptable to retrieve a "good guess" of the nearest neighbor. In those cases, we can use an algorithm which doesn't guarantee to return the actual nearest neighbor in every case, in return for improved speed or memory savings. Often such an algorithm will find the nearest neighbor in a majority of cases, but this depends strongly on the dataset being queried.

Algorithms that support the approximate nearest neighbor search include locality-sensitive hashing, best bin first and balanced box-decomposition tree based search.[22]

Nearest neighbor distance ratio

Nearest neighbor distance ratio does not apply the threshold on the direct distance from the original point to the challenger neighbor but on a ratio of it depending on the distance to the previous neighbor. It is used in CBIR to retrieve pictures through a "query by example" using the similarity between local features. More generally it is involved in several matching problems.

Fixed-radius near neighbors

Fixed-radius near neighbors is the problem where one wants to efficiently find all points given in Euclidean space within a given fixed distance from a specified point. The distance is assumed to be fixed, but the query point is arbitrary.

All nearest neighbors

For some applications (e.g. entropy estimation), we may have N data-points and wish to know which is the nearest neighbor for every one of those N points. This could, of course, be achieved by running a nearest-neighbor search once for every point, but an improved strategy would be an algorithm that exploits the information redundancy between these N queries to produce a more efficient search. As a simple example: when we find the distance from point X to point Y, that also tells us the distance from point Y to point X, so the same calculation can be reused in two different queries.

Given a fixed dimension, a semi-definite positive norm (thereby including every Lp norm), and n points in this space, the nearest neighbour of every point can be found in O(n log n) time and the m nearest neighbours of every point can be found in O(mn log n) time.[23][24]

See also

References

Citations

  1. ^ Cayton, Lawerence (2008). "Fast nearest neighbor retrieval for bregman divergences". Proceedings of the 25th International Conference on Machine Learning. pp. 112–119. doi:10.1145/1390156.1390171. ISBN 9781605582054. S2CID 12169321.
  2. ^ Qiu, Deyuan, Stefan May, and Andreas Nüchter. "GPU-accelerated nearest neighbor search for 3D registration." International conference on computer vision systems. Springer, Berlin, Heidelberg, 2009.
  3. ^ Becker, Ducas, Gama, and Laarhoven. "New directions in nearest neighbor searching with applications to lattice sieving." Proceedings of the twenty-seventh annual ACM-SIAM symposium on Discrete algorithms (pp. 10-24). Society for Industrial and Applied Mathematics.
  4. ^ a b Bewley, A.; Upcroft, B. (2013). Advantages of Exploiting Projection Structure for Segmenting Dense 3D Point Clouds (PDF). Australian Conference on Robotics and Automation.
  5. ^ Weber, Roger; Schek, Hans-J.; Blott, Stephen (1998). "A quantitative analysis and performance study for similarity search methods in high dimensional spaces" (PDF). VLDB '98 Proceedings of the 24rd International Conference on Very Large Data Bases. pp. 194–205.
  6. ^ Andrew Moore. "An introductory tutorial on KD trees" (PDF). Archived from the original (PDF) on 2016-03-03. Retrieved 2008-10-03.
  7. ^ Lee, D. T.; Wong, C. K. (1977). "Worst-case analysis for region and partial region searches in multidimensional binary search trees and balanced quad trees". Acta Informatica. 9 (1): 23–29. doi:10.1007/BF00263763. S2CID 36580055.
  8. ^ Roussopoulos, N.; Kelley, S.; Vincent, F. D. R. (1995). "Nearest neighbor queries". Proceedings of the 1995 ACM SIGMOD international conference on Management of data – SIGMOD '95. p. 71. doi:10.1145/223784.223794. ISBN 0897917316.
  9. ^ Andoni, A.; Indyk, P. (2006-10-01). "Near-Optimal Hashing Algorithms for Approximate Nearest Neighbor in High Dimensions". 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06). pp. 459–468. CiteSeerX 10.1.1.142.3471. doi:10.1109/FOCS.2006.49. ISBN 978-0-7695-2720-8.
  10. ^ a b Malkov, Yury; Ponomarenko, Alexander; Logvinov, Andrey; Krylov, Vladimir (2012), Navarro, Gonzalo; Pestov, Vladimir (eds.), "Scalable Distributed Algorithm for Approximate Nearest Neighbor Search Problem in High Dimensional General Metric Spaces", Similarity Search and Applications, vol. 7404, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 132–147, doi:10.1007/978-3-642-32153-5_10, ISBN 978-3-642-32152-8, retrieved 2024-01-16
  11. ^ a b Malkov, Yury; Yashunin, Dmitry (2016). "Efficient and robust approximate nearest neighbor search using Hierarchical Navigable Small World graphs". arXiv:1603.09320 [cs.DS].
  12. ^ a b Malkov, Yu A.; Yashunin, D. A. (2020-04-01). "Efficient and Robust Approximate Nearest Neighbor Search Using Hierarchical Navigable Small World Graphs". IEEE Transactions on Pattern Analysis and Machine Intelligence. 42 (4): 824–836. arXiv:1603.09320. doi:10.1109/TPAMI.2018.2889473. ISSN 0162-8828. PMID 30602420.
  13. ^ Arya, Sunil; Mount, David (1993). "Approximate Nearest Neighbor Queries in Fixed Dimensions". Proceedings of the Fourth Annual {ACM/SIGACT-SIAM} Symposium on Discrete Algorithms, 25–27 January 1993, Austin, Texas.: 271–280.
  14. ^ Olivier, Beaumont; Kermarrec, Anne-Marie; Marchal, Loris; Rivière, Etienne (2006). "Voro Net: A scalable object network based on Voronoi tessellations" (PDF). 2007 IEEE International Parallel and Distributed Processing Symposium. Vol. RR-5833. pp. 23–29. doi:10.1109/IPDPS.2007.370210. ISBN 1-4244-0909-8. S2CID 8844431.
  15. ^ Olivier, Beaumont; Kermarrec, Anne-Marie; Rivière, Etienne (2007). "Peer to Peer Multidimensional Overlays: Approximating Complex Structures". Principles of Distributed Systems. Lecture Notes in Computer Science. Vol. 4878. pp. 315–328. CiteSeerX 10.1.1.626.2980. doi:10.1007/978-3-540-77096-1_23. ISBN 978-3-540-77095-4.
  16. ^ Malkov, Yury; Ponomarenko, Alexander; Krylov, Vladimir; Logvinov, Andrey (2014). "Approximate nearest neighbor algorithm based on navigable small world graphs". Information Systems. 45: 61–68. doi:10.1016/j.is.2013.10.006. S2CID 9896397.
  17. ^ Toussaint, Godfried (1980). "The relative neighbourhood graph of a finite planar set". Pattern Recognition. 12 (4): 261–268. Bibcode:1980PatRe..12..261T. doi:10.1016/0031-3203(80)90066-7.
  18. ^ A. Rajaraman & J. Ullman (2010). "Mining of Massive Datasets, Ch. 3".
  19. ^ Weber, Roger; Blott, Stephen. "An Approximation-Based Data Structure for Similarity Search" (PDF). S2CID 14613657. Archived from the original (PDF) on 2017-03-04. {{cite journal}}: Cite journal requires |journal= (help)
  20. ^ Ramaswamy, Sharadh; Rose, Kenneth (2007). "Adaptive cluster-distance bounding for similarity search in image databases". ICIP.
  21. ^ Ramaswamy, Sharadh; Rose, Kenneth (2010). "Adaptive cluster-distance bounding for high-dimensional indexing". TKDE.
  22. ^ Arya, S.; Mount, D. M.; Netanyahu, N. S.; Silverman, R.; Wu, A. (1998). "An optimal algorithm for approximate nearest neighbor searching" (PDF). Journal of the ACM. 45 (6): 891–923. CiteSeerX 10.1.1.15.3125. doi:10.1145/293347.293348. S2CID 8193729. Archived from the original (PDF) on 2016-03-03. Retrieved 2009-05-29.
  23. ^ Clarkson, Kenneth L. (1983), "Fast algorithms for the all nearest neighbors problem", 24th IEEE Symp. Foundations of Computer Science, (FOCS '83), pp. 226–232, doi:10.1109/SFCS.1983.16, ISBN 978-0-8186-0508-6, S2CID 16665268.
  24. ^ Vaidya, P. M. (1989). "An O(n log n) Algorithm for the All-Nearest-Neighbors Problem". Discrete and Computational Geometry. 4 (1): 101–115. doi:10.1007/BF02187718.

Sources

Further reading

  • Shasha, Dennis (2004). High Performance Discovery in Time Series. Berlin: Springer. ISBN 978-0-387-00857-8.
  • Nearest Neighbors and Similarity Search – a website dedicated to educational materials, software, literature, researchers, open problems and events related to NN searching. Maintained by Yury Lifshits
  • Similarity Search Wiki – a collection of links, people, ideas, keywords, papers, slides, code and data sets on nearest neighbours

Read other articles:

Gaya atau nada penulisan artikel ini tidak mengikuti gaya dan nada penulisan ensiklopedis yang diberlakukan di Wikipedia. Bantulah memperbaikinya berdasarkan panduan penulisan artikel. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini)Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari ...

 

Este artículo o sección necesita referencias que aparezcan en una publicación acreditada.Este aviso fue puesto el 20 de enero de 2010. Isla Darwin Wenman n' Culpepper Island Ubicación geográficaRegión Islas GalápagosOcéano PacíficoCoordenadas 1°40′03″N 91°59′55″O / 1.6675, -91.998611111111Ubicación administrativaPaís Ecuador EcuadorProvincia  GalápagosCaracterísticas generalesSuperficie 1.1 km²Longitud 1,2 kmAnchura máxima 800 mPun...

 

Katedral Santa MariaCathédrale Sainte MarieKatedral Santa Maria, Oran, AljazairLokasiOranNegara AljazairDenominasiGereja Katolik RomaArsitekturTipe arsitekturGerejaAdministrasiKeuskupanKeuskupan Oran Katedral Santa Maria[1] (Prancis: Cathédrale Sainte Mariecode: fr is deprecated )[2] atau hanya Katedral Oran, adalah sebuah gereja katedral Katolik di Oran, Aljazair.[3] Katedral Oran secara khusus terletak di sektor St Eugene.[4] Katedral ini merupakan ger...

Dalam nama Tionghoa ini, nama keluarganya adalah Chen. Chen LitingNama asal陈鲤庭Lahir20 Oktober 1910Shanghai, TiongkokMeninggal27 Agustus 2013(2013-08-27) (umur 102)Shanghai, TiongkokNama lainChen Sibai (陈思白)AlmamaterUniversitas DaxiaPekerjaanPengarang drama, sutradara, penulis naskah, pakar teori filmKarya terkenalPut Down Your WhipQu YuanFar Away LoveWomen Side by SideSuami/istriMao YinfenAnakChen Maoni Chen Liting (Hanzi: 陈鲤庭; Pinyin: Chén Lǐtíng; ...

 

ДостопримечательностьЦерковь Анга 57°28′49″ с. ш. 18°42′23″ в. д.HGЯO Страна  Швеция[1] Местоположение Готланд[d][1] Конфессия лютеранство Епархия Диоцез Висбю Архитектурный стиль романская архитектура Сайт svenskakyrkan.se/romaklo…  Медиафайлы на Викискладе Ц�...

 

  جزر ماريانا الشمالية (بالتسمورية: Sankattan Siha Na Islas Mariånas)‏[1][2]  علم جزر ماريانا الشمالية  الشعار الشعار الوطني النشيد: الأرض والسكان إحداثيات 16°42′18″N 145°46′48″E / 16.705°N 145.78°E / 16.705; 145.78  [3] أخفض نقطة المحيط الهادئ (0 متر)[4]  المساحة 464.0 كيل...

American politician Victor HeintzMember of the U.S. House of Representativesfrom Ohio's 2nd districtIn officeMarch 4, 1917 – March 3, 1919Preceded byAlfred G. AllenSucceeded byAmbrose E. B. Stephens Personal detailsBorn(1876-11-20)November 20, 1876Grayville, IllinoisDiedDecember 27, 1968(1968-12-27) (aged 92)Cincinnati, OhioResting placeArmstrong Hill Cemetery, Indian Hill, OhioPolitical partyRepublicanAwardsDistinguished Service CrossSilver StarPurple HeartCroix d...

 

This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: United States v. Vuitch – news · newspapers · books · scholar · JSTOR (May 2013) 1971 United States Supreme Court caseUnited States v. VuitchSupreme Court of the United StatesArgued January 12, 1971Decided April 21, 1971Full case nameUnited States v....

 

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...

Cet article est une ébauche concernant la télévision en Italie. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Rai 4CaractéristiquesCréation 14 juillet 2008Propriétaire RaiLangue ItalienPays ItalieStatut Semi-généraliste nationale publiqueSiège social RomeSite web www.rai4.rai.itDiffusionAnalogique  NonNumérique  Oui en SD et HDSatellite  Oui en SD et HDCâble  Oui en SD seulementI...

 

Church in Adelaide, South Australia Church in South Australia, AustraliaSt Peter's CathedralCathedral Church of St Peter34°54′46″S 138°35′53″E / 34.91278°S 138.59806°E / -34.91278; 138.59806LocationAdelaide, South AustraliaCountryAustraliaDenominationAnglican Church of AustraliaWebsitestpeters-cathedral.org.auHistoryStatusCathedralFounded29 June 1869 (1869-06-29)Founder(s)Bishop Augustus ShortDedicationSt Peter the ApostleConsecrated1 Ja...

 

Dietmar Hamann Hamann pada tahun 2011Informasi pribadiNama lengkap Dietmar Johann Wolfgang Hamann[1]Tanggal lahir 27 Agustus 1973 (umur 50)[2]Tempat lahir Waldsassen, Jerman BaratTinggi 1,89 m (6 ft 2+1⁄2 in)[2]Posisi bermain Gelandang bertahanKarier junior1978–1989 Wacker München1989–1992 Bayern MünchenKarier senior*Tahun Tim Tampil (Gol)1992–1994 Bayern München (A) 24 (8)1993–1998 Bayern München 105 (6)1998–1999 Newcastle Unit...

Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Pondok Pesantren Tebuireng – berita · surat kabar · buku · cendekiawan · JSTOR Pesantren TebuirengAlamatDesa Cukir, Kecamatan DiwekJombang, Jawa TimurSitus webtebuireng.onlineInformasiJenisPondok pesantr...

 

Claire Clivaz berspekulasi bahwa Papirus 69 dapat dianggap sebagai saksi bisu untuk edisi Marsion dari Injil Lukas.[1] Apokrifa Perjanjian Baru Bapa-Bapa Apostolik 1 Klemens · 2 KlemensSurat-Surat Ignatius Surat PolikarpusKemartiran Polikarpus · Didache Barnabas · Diognetus Gembala Hermas Injil-injil Kristen-Yahudi Ebioni · Ibrani · Nasrani Injil-injil Tufuliyah Yakobus · Tomas · Suryani · Pseudo-Matius...

 

Навчально-науковий інститут інноваційних освітніх технологій Західноукраїнського національного університету Герб навчально-наукового інституту інноваційних освітніх технологій ЗУНУ Скорочена назва ННІІОТ ЗУНУ Основні дані Засновано 2013 Заклад Західноукраїнський �...

Gabriel Badilla oleh MadriCR, 2016Informasi pribadiNama lengkap Gabriel Badilla SeguraTanggal lahir 30 Juni 1984 (umur 39)Tempat lahir San José, Costa RicaTinggi 5 ft 11 in (1,80 m)Posisi bermain BekKarier junior SaprissaKarier senior*Tahun Tim Tampil (Gol)2001–2008 Saprissa 128 (12)2008–2010 New England Revolution 7 (0)2010– Saprissa 42 (3)Tim nasional‡2001 Kosta Rika U-17 4 (0)2005– Costa Rica 22 (1) * Penampilan dan gol di klub senior hanya dihitung dari lig...

 

Venezuelan American politician In this Spanish name, the first or paternal surname is Camejo and the second or maternal family name is Guanche. Peter CamejoPersonal detailsBornPeter Miguel Camejo Guanche(1939-12-31)December 31, 1939New York City, New York, U.S.DiedSeptember 13, 2008(2008-09-13) (aged 68)Folsom, California, U.S.Political partySocialist Workers (before 1980)Green (2002–2004; 2006–2008)Reform (2004–2006)SpouseMorella CamejoParentPeter Camejo (father)Alma mater...

 

This article may require copy editing for grammar, style, cohesion, tone, or spelling. You can assist by editing it. (April 2024) (Learn how and when to remove this message) Place in Blagoevgrad, BulgariaGarmen Гърмен (Bulgarian)GarmenLocation of GarmenCoordinates: 41°36′N 23°49′E / 41.600°N 23.817°E / 41.600; 23.817Country BulgariaProvinces(Oblast)BlagoevgradGovernment • MayorFeim IssaElevation605 m (1,985 ft)Population...

Russian special police units This article is about the Russian special military police force. For the Belarusian special police force, see OMON (Belarus). Special Purpose Mobile UnitОтряд мобильный особого назначенияPatch of OMONActive5 May 1919; 105 years ago (1919-05-05)Country  Soviet Union (originally)  Russia Agency National Guard of RussiaTypeGendarmerieCommon nameOmonovtsy, Black BeretsAbbreviationOMOH/ОMONStructureOffice...

 

Villanova Universitybahasa Latin: Universitas Villanovana Berkas:Villanova University Seal.svg     Tampilkan peta yang diperbesarTampilkan peta yang diperkecil InformasiNama sebelumnyaAugustinian College of Villanova (1842–1845)Villanova College (sampai 1953)MotoVeritas, Unitas, Caritas (Latin)Moto dalam bahasa InggrisKepercayaan, Kesatuan, PengamalanJenisSwastaDidirikan1842AfiliasiGereja Katolik Roma(Ordo Santo Agustinus)Dana abadi$551.0 juta (2016)[1]Presid...