Intracranial drug administration using nanotechnology
Nanoparticles for drug delivery to the brain is a method for transporting drug molecules across the blood–brain barrier (BBB) using nanoparticles. These drugs cross the BBB and deliver pharmaceuticals to the brain for therapeutic treatment of neurological disorders. These disorders include Parkinson's disease, Alzheimer's disease, schizophrenia, depression, and brain tumors. Part of the difficulty in finding cures for these central nervous system (CNS) disorders is that there is yet no truly efficient delivery method for drugs to cross the BBB. Antibiotics, antineoplastic agents, and a variety of CNS-active drugs, especially neuropeptides, are a few examples of molecules that cannot pass the BBB alone.[1] With the aid of nanoparticle delivery systems, however, studies have shown that some drugs can now cross the BBB, and even exhibit lower toxicity and decrease adverse effects throughout the body. Toxicity is an important concept for pharmacology because high toxicity levels in the body could be detrimental to the patient by affecting other organs and disrupting their function.[2] Further, the BBB is not the only physiological barrier for drug delivery to the brain. Other biological factors influence how drugs are transported throughout the body and how they target specific locations for action. Some of these pathophysiological factors include blood flow alterations, edema and increased intracranial pressure, metabolic perturbations, and altered gene expression and protein synthesis.[3] Though there exist many obstacles that make developing a robust delivery system difficult, nanoparticles provide a promising mechanism for drug transport to the CNS.
Background
The first successful delivery of a drug across the BBB occurred in 1995. The drug used was hexapeptide dalargin, an anti-nociceptive peptide that cannot cross the BBB alone.[4] It was encapsulated in polysorbate 80 coated nanoparticles and intravenously injected.[5] This was a huge breakthrough in the nanoparticle drug delivery field, and it helped advance research and development toward clinical trials of nanoparticle delivery systems. Nanoparticles range in size from 10 - 1000 nm (or 1 μm) and they can be made from natural or artificial polymers, lipids, dendrimers, and micelles.[1][5] Most polymers used for nanoparticle drug delivery systems are natural, biocompatible, and biodegradable, which helps prevent contamination in the CNS. Several current methods for drug delivery to the brain include the use of liposomes, prodrugs, and carrier-mediated transporters. Many different delivery methods exist to transport these drugs into the body, such as peroral, intranasal, intravenous, and intracranial. For nanoparticles, most studies have shown increasing progression with intravenous delivery. Along with delivery and transport methods, there are several means of functionalizing, or activating, the nanoparticle carriers. These means include dissolving or absorbing a drug throughout the nanoparticle, encapsulating a drug inside the particle, or attaching a drug on the surface of the particle.[2]
Types of nanoparticles for CNS drug delivery
Lipid-based
One type of nanoparticle involves use of liposomes as drug molecule carriers. The diagram on the right shows a standard liposome. It has a phospholipid bilayer separating the interior from the exterior of the cell.
Liposomes are composed of vesicular bilayers, lamellae, made of biocompatible and biodegradable lipids such as sphingomyelin, phosphatidylcholine, and glycerophospholipids.[6]Cholesterol, a type of lipid, is also often incorporated in the lipid-nanoparticle formulation. Cholesterol can increase stability of a liposome and prevent leakage of a bilayer because its hydroxyl group can interact with the polar heads of the bilayer phospholipids. Liposomes have the potential to protect the drug from degradation, target sites for action, and reduce toxicity and adverse effects.[7] Lipid nanoparticles can be manufactured by high pressure homogenization, a current method used to produce parenteralemulsions. This process can ultimately form a uniform dispersion of small droplets in a fluid substance by subdividing particles until the desired consistency is acquired.[8] This manufacturing process is already scaled and in use in the food industry, which therefore makes it more appealing for researchers and for the drug delivery industry.
Liposomes can also be functionalized by attaching various ligands on the surface to enhance brain-targeted delivery.
Cationic liposomes
Another type of lipid-nanoparticle that can be used for drug delivery to the brain is a cationic liposome. These are lipid molecules that are positively charged.[6] One example of cationic liposomes uses bolaamphiphiles, which contain hydrophilic groups surrounding a hydrophobic chain to strengthen the boundary of the nano-vesicle containing the drug. Bolaamphiphile nano-vesicles can cross the BBB, and they allow controlled release of the drug to target sites.[5]Lipoplexes can also be formed from cationic liposomes and DNA solutions, to yield transfection agents.[6] Cationic liposomes cross the BBB through adsorption mediated endocytosis followed by internalization in the endosomes of the endothelial cells. By transfection of endothelial cells through the use of lipoplexes, physical alterations in the cells could be made. These physical changes could potentially improve how some nanoparticle drug-carriers cross the BBB.
Metallic
Metal nanoparticles are promising as carriers for drug delivery to the brain. Common metals used for nanoparticle drug delivery are gold, silver, and platinum, owing to their biocompatibility. These metallic nanoparticles are used due to their large surface area to volume ratio, geometric and chemical tunability, and endogenous antimicrobial properties.[9] Silver cations released from silver nanoparticles can bind to the negatively charged cellular membrane of bacteria and increase membrane permeability, allowing foreign chemicals to enter the intracellular fluid.
Metal nanoparticles are chemically synthesized using reduction reactions.[10] For example, drug-conjugated silver nanoparticles are created by reducing silver nitrate with sodium borohydride in the presence of an ionic drug compound. The drug binds to the surface of the silver, stabilizing the nanoparticles and preventing the nanoparticles from aggregation.[11]
Metallic nanoparticles typically cross the BBB via transcytosis. Nanoparticle delivery through the BBB can be increased by introducing peptide conjugates to improve permeability to the central nervous system. For instance, recent studies have shown an improvement in gold nanoparticle delivery efficiency by conjugating a peptide that binds to the transferrin receptors expressed in brain endothelial cells.[12]
Solid lipid
Also, solid lipid nanoparticles (SLNs) are lipid nanoparticles with a solid interior as shown in the diagram on the right. SLNs can be made by replacing the liquid lipid oil used in the emulsion process with a solid lipid. In solid lipid nanoparticles, the drug molecules are dissolved in the particle's solid hydrophobic lipid core, this is called the drug payload, and it is surrounded by an aqueous solution.[6] Many SLNs are developed from triglycerides, fatty acids, and waxes. High-pressure homogenization or micro-emulsification can be used for manufacturing. Further, functionalizing the surface of solid lipid nanoparticles with polyethylene glycol (PEG) can result in increased BBB permeability.[13] Different colloidal carriers such as liposomes, polymeric nanoparticles, and emulsions have reduced stability, shelf life and encapsulation efficacy. Solid lipid nanoparticles are designed to overcome these shortcomings and have an excellent drug release and physical stability apart from targeted delivery of drugs.[14]
Nanoemulsions
Another form for nanoparticle delivery systems is oil-in-water emulsions done on a nano-scale.[13] This process uses common biocompatible oils such as triglycerides and fatty acids, and combines them with water and surface-coating surfactants. Oils rich in omega-3 fatty acids especially contain important factors that aid in penetrating the tight junctions of the BBB.[13]
Polymer-based
Other nanoparticles are polymer-based, meaning they are made from a natural polymer such as polylactic acid (PLA), poly D,L-glycolide (PLG),
polylactide-co-glycolide (PLGA),[15][16][17] and polycyanoacrylate (PCA).[7] Some studies have found that polymeric nanoparticles may provide better results for drug delivery relative to lipid-based nanoparticles because they may increase the stability of the drugs or proteins being transported. Polymeric nanoparticles may also contain beneficial controlled release mechanisms.
Nanoparticles made from natural polymers that are biodegradable have the abilities to target specific organs and tissues in the body, to carry DNA for gene therapy, and to deliver larger molecules such as proteins, peptides, and even genes.[7] To manufacture these polymeric nanoparticles, the drug molecules are first dissolved and then encapsulated or attached to a polymer nanoparticle matrix. Three different structures can then be obtained from this process; nanoparticles, nanocapsules (in which the drug is encapsulated and surrounded by the polymer matrix), and nanospheres (in which the drug is dispersed throughout the polymeric matrix in a spherical form).[7]
One of the most important traits for nanoparticle delivery systems is that they must be biodegradable on the scale of a few days.[2] A few common polymer materials used for drug delivery studies are polybutyl cyanoacrylate (PBCA), poly(isohexyl cyanoacrylate) (PIHCA), polylactic acid (PLA), or polylactide-co-glycolide (PLGA). PBCA undergoes degradation through enzymatic cleavage of its ester bond on the alkyl side chain to produce water-soluble byproducts. PBCA also proves to be the fastest biodegradable material, with studies showing 80% reduction after 24 hours post intravenous therapy injection.[2] PIHCA, however, was recently found to display an even lower degradation rate, which in turn further decreases toxicity. PIHCA, due to this slight advantage, is currently undergoing phase III clinical trials for transporting the drug doxorubicin as a treatment for hepatocellular carcinomas.
Human serum albumin (HSA) and chitosan are also materials of interest for the generation of nanoparticle delivery systems. Using albumin nanoparticles for stroke therapy can overcome numerous limitations. For instance, albumin nanoparticles can enhance BBB permeability, increase solubility, and increase half-life in circulation. Patients who have brain cancer overexpress albumin-binding proteins, such as SPARC and gp60, in their BBB and tumor cells, naturally increasing the uptake of albumin into the brain. Using this relationship, researches have formed albumin nanoparticles that co-encapsulate two anticancer drugs, paclitaxel and fenretinide, modified with low weight molecular protamine (LMWP), a type of cell-penetrating protein, for anti-glioma therapy.[18] Once injected into the patient's body, the albumin nanoparticles can cross the BBB more easily, bind to the proteins and penetrate glioma cells, and then release the contained drugs. This nanoparticle formulation enhances tumor-targeting delivery efficiency and improves the solubility issue of hydrophobic drugs.[18] Specifically, cationic bovine serum albumin-conjugated tanshinone IIA PEGylated nanoparticles injected into a MCAO rat model decreased the volume of infarction and neuronal apoptosis.[19]Chitosan, a naturally abundant polysaccharide, is particularly useful due to its biocompability and lack of toxicity. With its adsorptive and mucoadhesive properties, chitosan can overcome limitations of internasal administration to the brain. It has been shown that cationic chitosan nanoparticles interact with the negatively charged brain endothelium.[20]
Coating these polymeric nanoparticle devices with different surfactants can also aid BBB crossing and uptake in the brain. Surfactants such as polysorbate 80, 20, 40, 60, and poloxamer 188, demonstrated positive drug delivery through the blood–brain barrier, whereas other surfactants did not yield the same results.[2] It has also been shown that functionalizing the surface of nanoparticles with polyethylene glycol (PEG), can induce the "stealth effect", allowing the drug-loaded nanoparticle to circulate throughout the body for prolonged periods of time.[21] Further, the stealth effect, caused in part by the hydrophilic and flexible properties of the PEG chains, facilitates an increase in localizing the drug at target sites in tissues and organs.[21][22]
Mechanisms for delivery
Liposomes
A mechanism for liposome transport across the BBB is lipid-mediated free diffusion, a type of facilitated diffusion, or lipid-mediated endocytosis.[13] There exist many lipoprotein receptors which bind lipoproteins to form complexes that in turn transport the liposome nano-delivery system across the BBB. Apolipoprotein E (apoE) is a protein that facilitates transport of lipids and cholesterol.[13] ApoE constituents bind to nanoparticles, and then this complex binds to a low-density lipoprotein receptor (LDLR) in the BBB and allows transport to occur.
Polymeric nanoparticles
The mechanism for the transport of polymer-based nanoparticles across the BBB has been characterized as receptor-mediated endocytosis by the brain capillary endothelial cells.[2]Transcytosis then occurs to transport the nanoparticles across the tight junction of endothelial cells and into the brain. Surface coating nanoparticles with surfactants such as polysorbate 80 or poloxamer 188 was shown to increase uptake of the drug into the brain also.[2] This mechanism also relies on certain receptors located on the luminal surface of endothelial cells of the BBB.[6]Ligands coated on the nanoparticle's surface bind to specific receptors to cause a conformational change. Once bound to these receptors, transcytosis can commence, and this involves the formation of vesicles from the plasma membrane pinching off the nanoparticle system after internalization.
Additional receptors identified for receptor-mediated endocytosis of nanoparticle delivery systems are the scavenger receptor class B type I (SR-BI), LDL receptor (LRP1), transferrin receptor, and insulin receptor.[2] As long as a receptor exists on the endothelial surface of the BBB, any ligand can be attached to the nanoparticle's surface to functionalize it so that it can bind and undergo endocytosis.
Another mechanism is adsorption mediated transcytosis, where electrostatic interactions are involved in mediating nanoparticle crossing of the BBB.[6] Cationic nanoparticles (including cationic liposomes) are of interest for this mechanism, because their positive charges assist binding on the brain's endothelial cells. Using TAT-peptides, a cell-penetrating peptide, to functionalize the surface of cationic nanoparticles can further improve drug transport into the brain.
Magnetic and Magnetoelectric nanoparticles
In contrast to the above mechanisms, a delivery with magnetic fields does not strongly depend on the biochemistry of the brain. In this case, nanoparticles are literally pulled across the BBB via application of a magnetic field gradient. The nanoparticles can be pulled in as well as removed from the brain merely by controlling the direction of the gradient. For the approach to work, the nanoparticles must have a non-zero magnetic moment and have a diameter of less than 50 nm. Both magnetic and magnetoelectric nanoparticles (MENs) satisfy the requirements. However, it is only the MENs which display a non-zero magnetoelectric (ME) effect. Due to the ME effect, MENs can provide a direct access to local intrinsic electric fields at the nanoscale to enable a two-way communication with the neural network at the single-neuron level.[23][24] MENs, proposed by the research group of Professor Sakhrat Khizroev at Florida International University (FIU), have been used for targeted drug delivery and externally controlled release across the BBB to treat HIV and brain tumors, as well as to wirelessly stimulate neurons deep in the brain for treatment of neurodegenerative diseases such as Parkinson's Disease and others.
Focused ultrasound
Studies have shown that focused ultrasound bursts can noninvasively be used to disrupt tight junctions in desired locations of BBB, allowing for the increased passage of particles at that location. This disruption can last up to four hours after burst administration. Focused ultrasound works by generating oscillating microbubbles, which physically interact with the cells of the BBB by oscillating at a frequency which can be tuned by the ultrasound burst. This physical interaction is believed to cause cavitation and ultimately the disintegration of the tight junction complexes[25] which may explain why this effect lasts for several hours. However, the energy applied from ultrasound can result in tissue damage. Fortunately, studies have demonstrated that this risk can be reduced if preformed microbubbles are first injected before focused ultrasound is applied, reducing the energy required from the ultrasound.[26] This technique has applications in the treatment of various diseases. For example, one study has shown that using focused ultrasound with oscillating bubbles loaded with a chemotherapeutic drug, carmustine, facilitates the safe treatment of glioblastoma in an animal model. This drug, like many others, normally requires large dosages to reach the target brain tissue diffusion from the blood, leading to systemic toxicity and the possibilities of multiple harmful side effects manifesting throughout the body. However, focused ultrasound has the potential to increase the safety and efficacy of drug delivery to the brain.[27]
Toxicity
A study was performed to assess the toxicity effects of doxorubicin-loaded polymeric nanoparticle systems.[2] It was found that doses up to 400 mg/kg of PBCA nanoparticles alone did not cause any toxic effects on the organism. These low toxicity effects can most likely be attributed to the controlled release and modified biodistribution of the drug due to the traits of the nanoparticle delivery system.[2] Toxicity is a highly important factor and limit of drug delivery studies, and a major area of interest in research on nanoparticle delivery to the brain.
Metal nanoparticles are associated with risks of neurotoxicity and cytotoxicity. These heavy metals generate reactive oxygen species, which causes oxidative stress and damages the cells' mitochondria and endoplasmic reticulum.[28] This leads to further issues in cellular toxicity, such as damage to DNA and disruption of cellular pathways. Silver nanoparticles in particular have a higher degree of toxicity compared to other metal nanoparticles such as gold or iron.[29] Silver nanoparticles can circulate through the body and accumulate easily in multiple organs, as discovered in a study on the silver nanoparticle distribution in rats.[30] Traces of silver accumulated in the rats' lungs, spleen, kidney, liver, and brain after the nanoparticles were injected subcutaneously.[30] In addition, silver nanoparticles generate more reactive oxygen species compared to other metals, which leads to an overall larger issue of toxicity.
Research
In the early 21st century, extensive research is occurring in the field of nanoparticle drug delivery systems to the brain. One of the common diseases being studied in neuroscience is Alzheimer's disease. Many studies have been done to show how nanoparticles can be used as a platform to deliver therapeutic drugs to these patients with the disease. A few Alzheimer's drugs that have been studied especially are rivastigmine, tacrine, quinoline, piperine, and curcumin.[2] PBCA, chitosan, and PLGA nanoparticles were used as delivery systems for these drugs. Overall, the results from each drug injection with these nanoparticles showed remarkable improvements in the effects of the drug relative to non-nanoparticle delivery systems. This possibly suggests that nanoparticles could provide a promising solution to how these drugs could cross the BBB. One factor that still must be considered and accounted for is nanoparticle accumulation in the body. With long-term and frequent injections that are often required to treat chronic diseases such as Alzheimer's disease, polymeric nanoparticles could potentially build up in the body, causing undesirable effects. This area for concern would have to be further assessed to analyze these possible effects and to improve them.[2]
^ abcdefghijklKreuter, Jörg (2013). "Drug delivery to the central nervous system by polymeric nanoparticles: What do we know?". Advanced Drug Delivery Reviews. 71: 2–14. doi:10.1016/j.addr.2013.08.008. PMID23981489.
^ abcdSoppimath, Kumaresh S.; Aminabhavi, Tejraj M.; Kulkarni, Anandrao R.; Rudzinski, Walter E. (2001). "Biodegradable polymeric nanoparticles as drug delivery devices". Journal of Controlled Release. 70 (1–2): 1–20. doi:10.1016/S0168-3659(00)00339-4. PMID11166403.
^Blasi P, Schoubben A, Traina G, Manfroni G, Barberini L, Alberti PF, Cirotto C, Ricci M (2013). "Lipid nanoparticles for brain targeting III. Long-term stability and in vivo toxicity". Int J Pharm. 454 (1): 316–23. doi:10.1016/j.ijpharm.2013.06.037. PMID23832009.
^Mandal A. K. (2017). "Silver Nanoparticles as Drug Delivery Vehicle against Infections". Global Journal of Nanomedicine. 3 (2).
^ abLin T., Zhao P., Jiang Y., Tang Y., Jin H., Pan Z., Huang Y. (2016). "Blood–Brain-Barrier-Penetrating Albumin Nanoparticles for Biomimetic Drug Delivery via Albumin-Binding Protein Pathways for Antiglioma Therapy". ACS Nano. 10 (11): 9999–10012. doi:10.1021/acsnano.6b04268. PMID27934069.{{cite journal}}: CS1 maint: multiple names: authors list (link)
^Aktaş Y., Yemisci M., Andrieux K., Gürsoy R. N., Alonso M. J., Fernandez-Megia E., Couvreur P. (2005). "Development and Brain Delivery of Chitosan−PEG Nanoparticles Functionalized with the Monoclonal Antibody OX26". Bioconjugate Chemistry. 16 (6): 1503–1511. doi:10.1021/bc050217o. PMID16287248.{{cite journal}}: CS1 maint: multiple names: authors list (link)
^ abCarstens, Myrra G.; Romberg, Birgit; Oussoren, Christien; Storm, Gert; Laverman, Peter; Boerman, Otto C. (2006). "5". Observations on the Disappearance of the Stealth Property of PEGylated Liposomes: Effects of Lipid Dose and Dosing Frequency (3rd ed.). Liposome Technology. pp. 79–94.
^Mcdannold N., Vykhodtseva N., Raymond S., Jolesz F. A., Hynynen K. (2005). "MRI-guided targeted blood-brain barrier disruption with focused ultrasound: Histological findings in rabbits". Ultrasound in Medicine & Biology. 31 (11): 1527–1537. doi:10.1016/j.ultrasmedbio.2005.07.010. PMID16286030.{{cite journal}}: CS1 maint: multiple names: authors list (link)
^Fan C., Ting C., Chang Y., Wei K., Liu H., Yeh C. (2015). "Drug-loaded bubbles with matched focused ultrasound excitation for concurrent blood–brain barrier opening and brain-tumor drug delivery". Acta Biomaterialia. 15: 89–101. doi:10.1016/j.actbio.2014.12.026. PMID25575854.{{cite journal}}: CS1 maint: multiple names: authors list (link)
^Sintov, A., Velasco-Aguirre, C., Gallardo-Toledo, E., Araya, E., & Kogan, M. (2016). Metal Nanoparticles as Targeted Carriers Circumventing the Blood–Brain Barrier. International Review of Neurobiology Nanotechnology and the Brain, 199-227. doi:10.1016/bs.irn.2016.06.007
^Bahadar, H., Maqbool, F., Niaz, K., & Abdollahi, M. (2016). Toxicity of Nanoparticles and an Overview of Current Experimental Models. Toxicity of Nanoparticles and an Overview of Current Experimental Models. doi:10.7508/ibj.2016.01.001
^ abTang J., Xiong L., Wang S., Wang J., Liu L., Li J., Xi T. (2009). "Distribution, Translocation and Accumulation of Silver Nanoparticles in Rats". Journal of Nanoscience and Nanotechnology. 9 (8): 4924–4932. doi:10.1166/jnn.2009.1269. PMID19928170.{{cite journal}}: CS1 maint: multiple names: authors list (link)
All the Best! 1999-2009Album hit terbaik karya ArashiDirilis19 Agustus 2009 (2009-08-19)Direkam1999-2009GenrePop, RockDurasi194:39 (Edisi terbatas)151:39 (Edisi regular)LabelJ StormProduserJohnny KitagawaKronologi Arashi Dream A Live(2008)String Module Error: Match not found2008 All the Best! 1999-2009(2009) Boku no Miteiru Fūkei(2010)String Module Error: Match not found2010 Singel dalam album All the Best! 1999-2009 One LoveDirilis: 25 Juni 2008 (2008-06-25) Truth/Kaze no Muk�...
Artikel ini bukan mengenai Ispik, Republik Dagestan. İspikMunisipalitasİspikKoordinat: 41°18′32″N 48°25′05″E / 41.30889°N 48.41806°E / 41.30889; 48.41806Koordinat: 41°18′32″N 48°25′05″E / 41.30889°N 48.41806°E / 41.30889; 48.41806Negara AzerbaijanRayonQubaPopulasi[butuh rujukan] • Total1.242Zona waktuUTC+4 (AZT) • Musim panas (DST)UTC+5 (AZT) İspik adalah sebuah desa dan munisipalit...
BanyuanyarKelurahanKantor Lurah BanyuanyarPeta lokasi Kelurahan BanyuanyarNegara IndonesiaProvinsiJawa TengahKotaSurakartaKecamatanBanjarsariKode Kemendagri33.72.05.1013 Kode BPS3372050013 Jumlah penduduk14.906 jiwa (tahun 2020) Banyuanyar (Jawa: ꦧꦚꦸꦮꦚꦂ, translit. Banyuanyar) adalah sebuah kelurahan di kecamatan Banjarsari, Surakarta. Kelurahan ini memiliki kode pos 57137. Pada tahun 2020, kelurahan ini berpenduduk sebesar 14.906 jiwa. tersebut Banyu Anyar berbatasan...
Административное деление Польши Топонимия Польши — совокупность географических названий, включающая наименования природных и культурных объектов на территории Польши. Структура и состав топонимии страны обусловлены её географическим положением, этническим соста...
American politician Tom Murphy69th Speaker of the Georgia House of RepresentativesIn officeDecember 19, 1973 – January 13, 2003Governor See list Jimmy CarterGeorge BusbeeJoe Frank HarrisZell MillerRoy Barnes Preceded byGeorge L. SmithSucceeded byTerry ColemanMember of the Georgia House of RepresentativesIn officeJanuary 9, 1961 – January 13, 2003Preceded byHarold Lloyd MurphySucceeded byBill HeathConstituencyHaralson County (1961–1966)26th district (1966–1969)19th di...
State park in California, United States Andrew Molera State ParkIUCN category III (natural monument or feature)The beach in Andrew Molera State ParkShow map of CaliforniaShow map of the United StatesLocationMonterey County, California, United StatesNearest cityCarmel-by-the-Sea, CaliforniaCoordinates36°17′N 121°50′W / 36.283°N 121.833°W / 36.283; -121.833Area4,766 acres (19.29 km2)Established1968Governing bodyCalifornia Department of Parks and Re...
Law firms of the United Kingdom WithersworldwideHeadquartersLondon, United KingdomNo. of offices17No. of lawyers170 partners[1]Major practice areasPrivate clientCommercialDate founded1896 (London)Company typeLimited liability partnershipWebsitewithersworldwide.com Withers 20 Old Bailey Withersworldwide (Withers Bergman) is an international law firm with offices in the United States, United Kingdom, Europe, Asia, and the Caribbean. Withers specializes in t...
James Edward Smith Sir James Edward Smith (2 Desember 1759 – 17 Maret 1828) adalah seorang ahli botani Inggris dan pendiri Linnean Society. Smith dilahirkan di Norwich pada tahun 1759, putera dari saudagar wol yang kaya. Dia telah menunjukkan minatnya akan dunia natural, sebuah minat yang terlalu dini. Pada permulaan dasawarsa 1780-an dia terdaftar di perkuliahan kedokteran di Universitas Edinburgh, di sana dia belajar kimia di bawah panduan Joseph Black dan sejarah alam di ba...
Rock on Mars Coronation rockCoronation rock on Mars – the first target of the ChemCam laser analyzer on the Curiosity rover (August 17, 2012)Feature typeRockCoordinates4°35′S 137°26′E / 4.59°S 137.44°E / -4.59; 137.44 N165 (Coronation rock) is a rock on the surface of Aeolis Palus in Gale Crater on the planet Mars near the landing site (Bradbury Landing) of the Curiosity rover.[1][2] The approximate site coordinates are: 4°35′S 137°26′E&...
Constitutional document of the Belarusian Democratic Republic This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Second Constituent Charter – news · newspapers · books...
Chinese singer and actress (1920–1957) For the Chinese-Japanese table tennis player, see Shu Arai. In this Chinese name, the family name is Zhou. Zhou XuanBornSu Pu (traditional Chinese: 蘇璞; simplified Chinese: 苏璞; pinyin: Sū pú)(1920-08-01)August 1, 1920Changzhou, Jiangsu, ChinaDiedSeptember 22, 1957(1957-09-22) (aged 37)Shanghai, ChinaOccupation(s)Singer, actressYears active1932–1954Spouses Yan Hua (m. 1938; div. 1...
Megalithic temple complex in Malta Ħaġar QimFacade of the main temple of Ħaġar Qim, seen prior to the 2009 construction of a protective shelterLocation within MaltaLocationQrendi, MaltaCoordinates35°49′40″N 14°26′32″E / 35.82778°N 14.44222°E / 35.82778; 14.44222TypeTempleHistoryMaterialLimestoneFoundedc. 3700 BC – c. 3200 BCPeriodsĠgantija phaseSite notesExcavation dates1839–1954ArchaeologistsJ. G. VanceAntonio Annetto Car...
Irish language dialect This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Connacht Irish – news · newspapers · books · scholar · JSTOR (August 2023) (Learn how and when to remove this message) This article uses the IPA to transcribe Irish. Readers familiar with other conventions may wish to see Help:IPA/Irish f...
For other ships with the same name, see Brazilian ship Riachuelo. For the never-built Brazilian battleship ordered in 1914, see South American dreadnought race § Riachuelo. This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (January 2022) (Learn how and when to remove this message) The ironclad Riachuelo, 1885. History Brazil NameRiachuelo NamesakeBattle of...
Football match Football match2007 Bulgarian Cup finalEvent2006–07 Bulgarian Cup Levski Sofia Litex Lovech A Group A Group 1 0 Date24 May 2007VenueStadion Beroe, Stara ZagoraRefereeĽuboš MicheľAttendance11,000← 2006 2008 → The 2007 Bulgarian Cup final was the final match of the 2006–07 edition of the Bulgarian Cup competition. It was the 67th consecutive Bulgarian Cup final match. The defending cup holders CSKA Sofia were eliminated at the quarter-final stage by Beroe Stara...
1941 film by Joseph H. Lewis Invisible GhostFilm posterDirected byJoseph H. LewisScreenplay by Al Martin Helen Martin[1] Story by Al Martin Helen Martin[1] Produced bySam KatzmanStarringBela LugosiPolly Ann YoungJohn McGuireCinematography Marcel Le Picard Harvey Gould Edited byRobert Golden[1]ProductioncompanyBanner Pictures Corp.[1][2]Distributed byMonogram Pictures Corp.[2]Release date April 25, 1941 (1941-04-25) Running time64 ...
Midnight Swim redirects here. For the 2014 film, see The Midnight Swim. 2009 greatest hits album by IncubusMonuments and MelodiesGreatest hits album by IncubusReleasedJune 16, 2009VenueLive X, 99X, Atlanta (A Certain Shade of Green)Studio4th Street Recording, Santa Monica, CaliforniaNRG Studios, North HollywoodMorning View Studio, Malibu, CaliforniaSouthern Tracks Recording, AtlantaHenson Recording Studio, HollywoodGenreAlternative rock, alternative metalLength61:10 (disc 1) 47:22 (di...