Poloxamer

General structure
with a = 2–130 and b = 15–67

Poloxamers are nonionic triblock copolymers composed of a central hydrophobic chain of polyoxypropylene (poly(propylene oxide)) flanked by two hydrophilic chains of polyoxyethylene (poly(ethylene oxide)). The word poloxamer was coined by BASF inventor, Irving Schmolka, who received the patent for these materials in 1973.[1] Poloxamers are also known by the trade names Pluronic,[2] Kolliphor (pharma grade),[3] and Synperonic.[4]

Because the lengths of the polymer blocks can be customized, many different poloxamers exist that have slightly different properties. For the generic term poloxamer, these copolymers are commonly named with the letter P (for poloxamer) followed by three digits: the first two digits multiplied by 100 give the approximate molecular mass of the polyoxypropylene core, and the last digit multiplied by 10 gives the percentage polyoxyethylene content (e.g. P407 = poloxamer with a polyoxypropylene molecular mass of 4000 g/mol and a 70% polyoxyethylene content). For the Pluronic and Synperonic tradenames, coding of these copolymers starts with a letter to define its physical form at room temperature (L = liquid, P = paste, F = flake (solid)) followed by two or three digits, The first digit (two digits in a three-digit number) in the numerical designation, multiplied by 300, indicates the approximate molecular weight of the hydrophobe; and the last digit x 10 gives the percentage polyoxyethylene content (e.g., L61 indicates a polyoxypropylene molecular mass of 1800 g/mol and a 10% polyoxyethylene content). In the example given, poloxamer 181 (P181) = Pluronic L61 and Synperonic PE/L 61.

Common poloxamer properties

Polaxamer Formula MW (Da) HLB Source
L31 PEO2PPO16PEO2 1100 1-7 [5]
L61 PEO2PPO30PEO2 2000 3 [6][7]
L81 PEO3PPO43PEO3 2750 2 [7]
L101 PEO4PPO59PEO4 3800 1 [7]
L121 PEO5PPO68PEO5 4400 1 [7]
L42 - 1630 7-12 [8]
L62 PEO8PPO30PEO8 2500 1-7 [8][9]
L72 - 2750 1-7 [8]
L92 PEO14PPO50PEO14 3650 - [10]
L122 - 5000 1-7 [8]
L43 - 1850 7-12 [8]
L63 - 2650 7-12 [8]
P103 PEO17PPO60PEO17 4950 7-12 [8]
P123 PEO20PPO69PEO20 5750 7-12 [8]
L44 - 2200 12-18 [8]
L64 PEO13PPO30PEO13 2900 12-18 [8]
P84 PEO19PPO43PEO19 4200 12-18 [8]
P104 PEO27PPO61PEO27 5900 12-18 [8]
L35 PEO11PPO16PEO11 1900 18-23 [8][5]
P65 PEO18PPO25PEO18 3400 12-18 [8]
P75 - 4150 12-18 [8]
P85 PEO26PPO40PEO26 4600 12-18 [8]
P105 PEO37PPO56PEO37 6500 12-18 [8]
F77 - 6600 >24 [8]
F87 PEO61PPO40PEO61 7700 >24 [8][7]
F127 PEO100PPO65PEO100 12600 18-23 [8]
F38 PEO42PPO16PEO42 4700 >24 [8][9]
F68 PEO76PPO29PEO76 8400 >24 [8][9]
F88 PEO103PPO39PEO103 11400 >24 [8][9]
F98 PEO118PPO45PEO118 13000 >24 [8][9]
F108 PEO132PPO50PEO132 14600 >24 [8]

Micellization and phase transitions

An important characteristic of poloxamer solutions is their temperature dependent self-assembling and thermo-gelling behavior. Concentrated aqueous solutions of poloxamers are liquid at low temperature and form a gel at higher temperature in a reversible process. The transitions that occur in these systems depend on the polymer composition (molecular weight and hydrophilic/hydrophobic molar ratio).

At low temperatures and concentrations (below the critical micelle temperature and critical micelle concentration) individual block copolymers (unimers) are present in solution. Above these values, aggregation of individual unimers occurs in a process called micellization. This aggregation is driven by the dehydration of the hydrophobic polyoxypropylene block that becomes progressively less soluble as the polymer concentration or temperature increases. The aggregation of several unimers occurs to minimize the interactions of the PPO blocks with the solvent. Thus, the core of the aggregates is made from the insoluble blocks (polyoxypropylene) while the soluble portion (polyoxyethylene) forms the shell of the micelles.

The mechanisms on the micellization at equilibrium have shown to depend on two relaxation times: (1) the first and fastest (tens of the microseconds scale) corresponds to the unimers exchange between micelles and the bulk solution and follows the Aniansson-Wall model (step-by-step insertion and expulsion of single polymer chains),[11] and (2) the second and much slower one (in the millisecond range) is attributed to the formation and breakdown of whole micellar units leading to the final micellar size equilibration.

Besides spherical micelles, elongated or worm-like micelles can also be formed. The final geometry will depend on the entropy costs of stretching the blocks, which is directly related to their composition (size and polyoxypropylene/polyoxyethylene ratio).[12] The mechanisms involved in the shape transformation are different compared to the dynamics of micellization. Two mechanisms were proposed for the sphere-to-rod transitions of block copolymer micelles, in which the micellar growth can occur by (A) fusion/fragmentation of micelles or (B) concomitant fusion/fragmentation of micelles and unimer exchange, followed by smoothing of the rod-like structures.[13]

With higher increments of the temperature and/or concentration, other phenomena can occur such as the formation of highly ordered mesophases (cubic, hexagonal and lamellar). Eventually, a complete dehydration of the polyoxypropylene blocks and the collapse of the polyoxyethylene chains will lead to clouding and/or macroscopic phase separation. This is due to the fact that hydrogen bonding between the polyoxyethylene and the water molecules breaks down at high temperature and polyoxyethylene becomes also insoluble in water.

The phase transitions can also be largely influenced by the use of additives such as salts and alcohols. The interactions with salts are related to their ability to act as water structure makers (salting-out) or water structure breakers (salting-in). Salting-out salts increase the self-hydration of water through hydrogen bonding and reduce the hydration of the copolymers, thus reducing the critical micelle temperature and critical micelle concentration. Salting-in electrolytes reduce the water self-hydration and increase the polymer hydration, therefore increasing the critical micelle temperature and critical micelle concentration. The different salts have been categorized by the Hofmeister series according to their ‘salting-out’ power. Different phase diagrams characterizing all these transitions have been constructed for most poloxamers using a great variety of experimental techniques (e.g. SAXS, Differential scanning calorimetry, viscosity measurements, light scattering).

Uses

Because of their amphiphilic structures, the polymers have surfactant properties that make them useful in industrial applications. Among other things, they can be used to increase the water solubility of hydrophobic, oily substances or otherwise increase the miscibility of two substances with different hydrophobicities. For this reason, these polymers are commonly used in industrial applications, cosmetics, and pharmaceuticals. They have also been evaluated for various drug delivery applications and were shown to sensitize drug-resistant cancers to chemotherapy.

In bioprocess applications, poloxamers are used in cell culture media for their cell cushioning effects because their addition leads to less stressful shear conditions for cells in reactors. There are grades of poloxamers commercially available specifically for cell culture, including Kolliphor P 188 Bio.[14]

In materials science, the poloxamer P123 has recently been used in the synthesis of mesoporous materials, including SBA-15.

In colloidal science, certain poloxamers such as Pluronic F-108 or Pluronic F-127, are used as steric stabilizers to prevent coalescence and/or reduce aggregation.[15] In the case of hydrophobic colloids, the poloxamer's interior hydrophobic block is absorbed into the colloid while the two hydrophilic tails remain suspended in solution, creating a steric barrier.

When mixed with water, concentrated solutions of poloxamers can form hydrogels. These gels can be extruded easily, acting as a carrier for other particles, and used for robocasting.[16]

Biological effect

Work led by Kabanov has recently shown that some of these polymers, originally thought to be inert carrier molecules, have a very real effect on biological systems independently of the drug they are transporting.[17][18][19][20] The poloxamers have been shown to incorporate into cellular membranes affecting the microviscosity of the membranes. The polymers seem to have the greatest effect when absorbed by the cell as an unimer rather than as a micelle.[21]

On multi drug resistant cancer cells

Poloxamers have been shown to preferentially target cancer cells, due to differences in the membrane of these cells when compared to noncancer cells. Poloxamers have also been shown to inhibit MDR proteins and other drug efflux transporters on the surface of cancer cells; the MDR proteins are responsible for the efflux of drugs from the cells and hence increase the susceptibility of cancer cells to chemotherapeutic agents such as doxorubicin.

Another effect of the polymers upon cancer cells is the inhibition of the production of ATP in multi-drug resistant (MDR) cancer cells. The polymers seem to inhibit respiratory proteins I and IV, and the effect on respiration seems to be selective for MDR cancer cells, which may be explained by the difference in fuel sources between MDR and sensitive cells (fatty acids and glucose respectively).

The poloxamers have also been shown to enhance proto-apoptotic signaling, decrease anti-apoptoic defense in MDR cells, inhibit the glutathione/glutathione S-transferase detoxification system, induce the release of cytochrome C, increase reactive oxygen species in the cytoplasm, and abolish drug sequestering within cytoplasmic vesicles.

On nuclear factor kappa B

Certain poloxamers such as P85 have been shown not only to be able to transport target genes to target cells, but also to increase gene expression. Certain poloxamers, such as P85 and L61, have also been shown to stimulate transcription of NF kappaB genes, although the mechanism by which this is achieved is currently unknown, bar that P85 has been shown to induce phosphorylation of the inhibitory kappa.

Potential degradation by sonication

Wang et al. reported that aqueous solutions of poloxamer 188 (Pluronic F-68) and poloxamer 407 (Pluronic F-127) sonicated in the presence or absence of multi-walled carbon nanotubes (MWNTs) can became highly toxic to cultured cells. Moreover, toxicity correlated with the sonolytic degradation of the polymers.[22]

References

  1. ^ US 3740421, Schmolka IR, "Polyoxyethylene-polyoxypropylene aqueous gels", published 1973-06-19, assigned to BASF Wyandotte Corp. 
  2. ^ "BASF - Product information the chemicals catalog - Pluronics". BASF Corporation Website. Retrieved 2008-12-09.
  3. ^ "Poloxamers". BASF Pharma Solutions.
  4. ^ "Synperonic". Croda.
  5. ^ a b Patel, Dhruvi; Vaswani, Payal; Sengupta, Sumana; Ray, Debes; Bhatia, Dhiraj; Choudhury, Sharmistha Dutta; Aswal, Vinod K.; Kuperkar, Ketan; Bahadur, Pratap (February 2023). "Thermoresponsive phase behavior and nanoscale self-assembly generation in normal and reverse Pluronics®". Colloid and Polymer Science. 301 (2): 75–92. doi:10.1007/s00396-022-05039-0.
  6. ^ Pérez-Sánchez, Germán; Vicente, Filipa A.; Schaeffer, Nicolas; Cardoso, Inês S.; Ventura, Sónia P. M.; Jorge, Miguel; Coutinho, João A. P. (29 August 2019). "Rationalizing the Phase Behavior of Triblock Copolymers through Experiments and Molecular Simulations" (PDF). The Journal of Physical Chemistry C. 123 (34): 21224–21236. doi:10.1021/acs.jpcc.9b04099.
  7. ^ a b c d e Oh, Kyung T; Bronich, Tatiana K; Kabanov, Alexander V (February 2004). "Micellar formulations for drug delivery based on mixtures of hydrophobic and hydrophilic Pluronic® block copolymers". Journal of Controlled Release. 94 (2–3): 411–422. doi:10.1016/j.jconrel.2003.10.018. PMID 14744491.
  8. ^ a b c d e f g h i j k l m n o p q r s t u v w x y Alexandridis, Paschalis; Alan Hatton, T (March 1995). "Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics, and modeling". Colloids and Surfaces A: Physicochemical and Engineering Aspects. 96 (1–2): 1–46. doi:10.1016/0927-7757(94)03028-X.
  9. ^ a b c d e Tsui, Hung-Wei; Wang, Jing-Han; Hsu, Ya-Hui; Chen, Li-Jen (December 2010). "Study of heat of micellization and phase separation for Pluronic aqueous solutions by using a high sensitivity differential scanning calorimetry". Colloid and Polymer Science. 288 (18): 1687–1696. doi:10.1007/s00396-010-2308-5.
  10. ^ Guo, Chen; Liu, Hui-Zhou; Chen, Jia-Yong (December 2000). "A Fourier transform infrared study on water-induced reverse micelle formation of block copoly(oxyethylene–oxypropylene–oxyethylene) in organic solvent". Colloids and Surfaces A: Physicochemical and Engineering Aspects. 175 (1–2): 193–202. doi:10.1016/S0927-7757(00)00457-X.
  11. ^ Aniansson EA, Wall SN (May 1974). "Kinetics of step-wise micelle association". The Journal of Physical Chemistry. 78 (10): 1024–1030. doi:10.1021/j100603a016.
  12. ^ Alexandridis P, Hatton T (March 1995). "Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics, and modeling". Colloids and Surfaces A. 96 (1–2): 1–46. doi:10.1016/0927-7757(94)03028-X.
  13. ^ Denkova AG, Mendes E, Coppens MO (2010). "Non-equilibrium dynamics of block copolymer micelles in solution: recent insights and open questions". Soft Matter. 6 (11): 2351–2357. Bibcode:2010SMat....6.2351D. doi:10.1039/C001175B.
  14. ^ "Poloxamers for Pharmaceutical Applications". BASF Pharma. Retrieved 2022-06-11.
  15. ^ Kamp, Marlous; Sacanna, Stefano; Dullens, Roel P. A. (13 May 2024). "Spearheading a new era in complex colloid synthesis with TPM and other silanes". Nature Reviews Chemistry. 8 (6): 433–453. doi:10.1038/s41570-024-00603-4. PMID 38740891. Retrieved 15 July 2024.
  16. ^ Feilden E (2016). "Robocasting of structural ceramic parts with hydrogel inks". Journal of the European Ceramic Society. 36 (10): 2525–2533. doi:10.1016/j.jeurceramsoc.2016.03.001. hdl:10044/1/29973.
  17. ^ Pitto-Barry A, Barry NP (2014-04-15). "Pluronic® block-copolymers in medicine: from chemical and biological versatility to rationalisation and clinical advances". Polymer Chemistry. 5 (10): 3291–3297. doi:10.1039/C4PY00039K. hdl:10454/11223. ISSN 1759-9962. S2CID 98592847.
  18. ^ Li J, Yu F, Chen Y, Oupický D (December 2015). "Polymeric drugs: Advances in the development of pharmacologically active polymers". Journal of Controlled Release. 219: 369–382. doi:10.1016/j.jconrel.2015.09.043. PMC 4656093. PMID 26410809.
  19. ^ Nugraha DH, Anggadiredja K, Rachmawati H (2023-01-16). "Mini-Review of Poloxamer as a Biocompatible Polymer for Advanced Drug Delivery". Brazilian Journal of Pharmaceutical Sciences. 58. doi:10.1590/s2175-97902022e21125. ISSN 2175-9790. S2CID 256177315.
  20. ^ de Castro KC, Coco JC, Dos Santos ÉM, Ataide JA, Martinez RM, do Nascimento MH, et al. (December 2022). "Pluronic® triblock copolymer-based nanoformulations for cancer therapy: A 10-year overview". Journal of Controlled Release. 353: 802–822. doi:10.1016/j.jconrel.2022.12.017. PMID 36521691. S2CID 254851024.
  21. ^ Batrakova EV, Kabanov AV (September 2008). "Pluronic block copolymers: evolution of drug delivery concept from inert nanocarriers to biological response modifiers". Journal of Controlled Release. 130 (2): 98–106. doi:10.1016/j.jconrel.2008.04.013. PMC 2678942. PMID 18534704.
  22. ^ Wang R, Hughes T, Beck S, Vakil S, Li S, Pantano P, Draper RK (November 2013). "Generation of toxic degradation products by sonication of Pluronic® dispersants: implications for nanotoxicity testing". Nanotoxicology. 7 (7): 1272–1281. doi:10.3109/17435390.2012.736547. PMC 3657567. PMID 23030523.

Further reading

Read other articles:

  جمهورية بيلاروس الاشتراكية السوفيتية جمهورية بيلاروس الاشتراكية السوفيتية جمهورية بيلاروس الاشتراكية السوفيتية  خريطة الموقع الشعار (بالبيلاروسية: Пралетарыі ўсіх краін, яднайцеся!)‏  تاريخ التأسيس 1 يناير 1919  تاريخ الإلغاء 25 أغسطس 1991  تقسيم إداري البلد ا�...

 

 

Direktur Utama PT PLN (Persero)PetahanaDarmawan Prasodjosejak 6 Desember 2021Dibentuk1979Pejabat pertamaSuryono Berikut adalah daftar Direktur Utama Perusahaan Listrik Negara (PLN): No Nama Awal Jabatan Akhir Jabatan Ket. Ref. — Abdul Kadir 1970 1979 1 Suryono 1979 1984 2 Sardjono 1984 1988 3 Ermansyah Jamin 1988 1992 4 Muhammad Zuhal 1992 1995 5 Djiteng Marsudi 1995 1998 6 Adi Satria 1998 2000 7 Kuntoro Mangkusubroto 2000 2001 [1] 8 Eddie Widiono 21 Februari 2001 10 Maret 2008...

 

 

Pemilihan Umum Bupati Blitar 2020201520249 Desember 2020[1]Kandidat   Calon Rijanto Rini Syarifah Partai PDI-P PKB Pendamping Marhaenis Urip Widodo Rahmat Santoso Suara rakyat 255.694 365.365 Persentase 41.16% 58.84% Peta persebaran suara Peta Jawa Timur yang menyoroti Kabupaten Blitar Bupati dan Wakil Bupati petahanaRijanto danMarhaenis Urip Widodo Partai Demokrasi Indonesia Perjuangan Bupati dan Wakil Bupati terpilih Rini Syarifah danRahmat Santoso Pemilihan Umum Bupati B...

Chennai Egmore–Karaikal Kamban ExpressOverviewService typeExpressFirst service23 April 2010; 13 years ago (2010-04-23)Current operator(s)Southern Railway zoneRouteTerminiChennai Egmore (MS)Karaikal (KIK)Stops10Distance travelled361 km (224 mi)Average journey time7h 45mService frequencyDaily [a]Train number(s)16175/16176On-board servicesClass(es)AC 2 tier, AC 3 tier, Sleeper class, General UnreservedSeating arrangementsNoSleeping arrangementsYesCatering f...

 

 

Berikut merupakan maskapai penerbangan yang beroperasi di Jerman. Air Berlin Boeing 737-800 Blue Wings Airbus 320-200 Cirrus Airlines Embraer 170 Condor Airlines Boeing 757-300 Eurowings BAe 146-200 Germania Fokker 100 Germanwings Airbus A319 Lufthansa Boeing 747-400 LTU Airbus Airbus A330-200 OLT - Ostfriesische Lufttransport Fairchild Swearingen Metroliner TUIfly Boeing 737-700 AIRLINE IATA ICAO KODE PANGGIL MULAIOPERASI ACM Air Charter BVR BAVARIAN Aero Business Charter GBJ GLOBAL JET Aero...

 

 

Erasmus DarwinErasmus Darwin sekitar 1792-3. Lukisan cat minyak asli oleh Joseph Wright di Museum dan Galeri Seni DerbyLahir(1731-12-12)12 Desember 1731Elston Hall, Elston, Nottinghamshire deat Newark-on-TrentMeninggal18 April 1802(1802-04-18) (umur 70)Breadsall, DerbyMakamGereja All Saints, BreadsallTempat tinggalLichfield Erasmus Darwin (12 Desember 1731 – 18 April 1802) adalah seorang dokter Inggris yang menolak tawaran George III untuk menjadi dokter Kerajaan. Salah ...

Sporting event delegationLatvia at the2018 Winter OlympicsFlag of LatviaIOC codeLATNOCLatvian Olympic CommitteeWebsitewww.olimpiade.lv (in Latvian)in Pyeongchang, South Korea9–25 February 2018Competitors34 (25 men and 9 women) in 9 sportsFlag bearer Daumants Dreiškens[1]MedalsRanked 28th Gold 0 Silver 0 Bronze 1 Total 1 Winter Olympics appearances (overview)19241928193219361948–1988199219941998200220062010201420182022Other related appearances Soviet Unio...

 

 

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: コルク – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2017年4月) コルクを打ち抜いて作った瓶の栓 コルク(木栓、�...

 

 

2005 single by Nelly featuring Jung Tru and King JacobErrtimeSingle by Nelly featuring Jung Tru and King Jacobfrom the album The Longest Yard: The Soundtrack ReleasedMarch 15, 2005Recorded2005GenreHip hopLength4:09LabelUniversal RecordsSongwriter(s)NellyJung TruKing JacobProducer(s)Jazze PhaNelly singles chronology 'N' Dey Say (2005) Errtime (2005) Fly Away (2005) Errtime (stands for Everytime) is a single by the rapper Nelly released in March 2005, from the soundtrack to the 2005 film, T...

Official process of notifying someone of legal proceedings This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) The examples and perspective in this article deal primarily with the United States and do not represent a worldwide view of the subject. You may improve this article, discuss the issue on the talk page, or create a new article, as appropriate. (December 2010) (Learn how and when to r...

 

 

American politician Alma LarsonLarson in 196522nd Secretary of State of South DakotaIn office1965–1973GovernorNils BoeFrank FarrarRichard F. KneipPreceded byEssie WiedenmanSucceeded byLorna Herseth Personal detailsBorn(1932-05-21)May 21, 1932Vivian, South Dakota, U.S.DiedSeptember 2, 2012(2012-09-02) (aged 80)Political partyRepublican Alma Larson (May 21, 1932 – September 2, 2012) was an American politician. She served as Secretary of State of South Dakota from 1965 to 1973. Life and...

 

 

Artikel ini perlu dikembangkan dari artikel terkait di Wikipedia bahasa Inggris. (November 2023) klik [tampil] untuk melihat petunjuk sebelum menerjemahkan. Lihat versi terjemahan mesin dari artikel bahasa Inggris. Terjemahan mesin Google adalah titik awal yang berguna untuk terjemahan, tapi penerjemah harus merevisi kesalahan yang diperlukan dan meyakinkan bahwa hasil terjemahan tersebut akurat, bukan hanya salin-tempel teks hasil terjemahan mesin ke dalam Wikipedia bahasa Indonesia. Ja...

 本表是動態列表,或許永遠不會完結。歡迎您參考可靠來源來查漏補缺。 潛伏於中華民國國軍中的中共間諜列表收錄根據公開資料來源,曾潛伏於中華民國國軍、被中國共產黨聲稱或承認,或者遭中華民國政府調查審判,為中華人民共和國和中國人民解放軍進行間諜行為的人物。以下列表以現今可查知時間為準,正確的間諜活動或洩漏機密時間可能早於或晚於以下所歸�...

 

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (سبتمبر 2015) ايام السيد عربي أيضاً معروف باسم السيد عربي النوع تاريخي صناعة مصر إخراج احمد خضر المخرج الإبداعي بوست اوفيس سيناريو احمد حسني راوي احمد حسني، ميرهان الدسو...

 

 

Cộng hòa Dân chủ Nhân dân Yemen Tên bản ngữ جمهورية اليَمَنْ الديمُقراطية الشَعْبِيّةGumhūrīyyat al-Yaman ad-Dīmuqrāţīyyah ash-Sha'bīyyah 1967–1990 Quốc kỳ Quốc huy Quốc ca: الجمهورية المتحدة(Ả Rập)al-Jumhūrīyah al-MuttaḥidâhNước Cộng hoà thống nhất(Lời gốc) Tổng quanThủ đôvà thành phố lớn nhấtAdenNgôn ngữ thông...

American military officer (1821–1876) Gordon GrangerGordon Granger, photo taken during American Civil WarBorn(1821-11-06)November 6, 1821Joy, New York, USDiedJanuary 10, 1876(1876-01-10) (aged 54)Santa Fe, New Mexico, USPlace of burialLexington Cemetery, Lexington, Kentucky, USAllegianceUnited StatesService/branchUnited States Army (Union Army)Years of service1845–1876RankMajor generalCommands heldArmy of KentuckyIV CorpsXIII CorpsDepartment of TexasDistrict of New MexicoBattles...

 

 

Untuk kegunaan lain, lihat Siantar (disambiguasi). Siantar BaratKecamatanKantor Kecamatan Siantar BaratPeta lokasi Kecamatan Siantar BaratNegara IndonesiaProvinsiSumatera UtaraKotaPematangsiantarPemerintahan • CamatPardomuan Nasution, SS, MSPPopulasi • Total45,291 jiwa jiwaKode Kemendagri12.72.02 Kode BPS1273030 Luas3,21 km²Desa/kelurahan8 Siantar Barat adalah sebuah kecamatan di Kota Pematangsiantar, Sumatera Utara, Indonesia. Pembentukan Kecamatan Siantar Barat...

 

 

La colonisation du Congo s'opéra durant la période comprise entre la première exploration du Congo-Kinshasa par Henry Morton Stanley (1867) jusqu'à l'annexion du pays par la prise de possession par le roi Léopold II de Belgique (1885). Chronologie 1578 : le Portugais Duarte Lopez est le premier occidental à remonter le fleuve Congo. 1874-1877 : exploration du fleuve Congo par Henry Morton Stanley. 1876 : fondation de l’Association internationale africaine (AIA) par Léo...

フランコ・カウジオ 名前愛称 Barone(男爵)[1]、 ブラジル[1]ラテン文字 Franco Causio基本情報国籍 イタリア生年月日 (1949-02-10) 1949年2月10日(75歳)出身地 レッチェ身長 170cm体重 68kg選手情報ポジション MF 代表歴1972-1983 イタリア [2] 63 (6) ■テンプレート(■ノート ■解説)■サッカー選手pj フランコ・カウジオ(Franco Causio、1949年2月1日 - )は、イタリアプ...

 

 

Nicholaas FerdinandLe GrandNicolas ou Nicolaas Le Grand Un canal à Amsterdam de Jan van der Heyden (1637-1712) ; l'Amsterdam qu'a connue Le Grand. Données clés Naissance vers 1660 Royaume de France ?ou Pays-Bas espagnols ? Décès 1710 Provinces-Unies ? Activité principale compositeur baroque Lieux d'activité Provinces-Unies Collaborations Abraham AlewijnCornelis Sweerts modifier Nicholaas (Nicolas ou Nicolaas) Ferdinand Le Grand, né vers 1660 (?) et mort en 17...