Robocasting

Robocasting (also known as robotic material extrusion[1]) is an additive manufacturing technique analogous to Direct Ink Writing and other extrusion-based 3D-printing techniques in which a filament of a paste-like material is extruded from a small nozzle while the nozzle is moved across a platform.[2] The object is thus built by printing the required shape layer by layer. The technique was first developed in the United States in 1996 as a method to allow geometrically complex ceramic green bodies to be produced by additive manufacturing.[3] In robocasting, a 3D CAD model is divided up into layers in a similar manner to other additive manufacturing techniques. The material (typically a ceramic slurry) is then extruded through a small nozzle as the nozzle's position is controlled, drawing out the shape of each layer of the CAD model. The material exits the nozzle in a liquid-like state but retains its shape immediately, exploiting the rheological property of shear thinning. It is distinct from fused deposition modelling as it does not rely on the solidification or drying to retain its shape after extrusion.

Process

Robocasting begins with a software process. One method is importing an STL file and slicing that shape into layers of similar thickness to the nozzle diameter. The part is produced by extruding a continuous filament of material in the shape required to fill the first layer. Next, either the stage is moved down or the nozzle is moved up and the next layer is deposited in the required pattern. This is repeated until the 3D part is complete. Numerically controlled mechanisms are typically used to move the nozzle in a calculated tool-path generated by a computer-aided manufacturing (CAM) software package. Stepper motors or servo motors are usually employed to move the nozzle with precision as fine as nanometers.[4]

The part is typically very fragile and soft at this point. Drying, debinding and sintering usually follow to give the part the desired mechanical properties.

Depending on the material composition, printing speed and printing environment, robocasting can typically deal with moderate overhangs and large spanning regions many times the filament diameter in length, where the structure is unsupported from below.[5] This allows intricate periodic 3D scaffolds to be printed with ease, a capability which is not possessed by other additive manufacturing techniques. These parts have shown extensive promise in fields of photonic crystals, bone transplants, catalyst supports, and filters. Furthermore, supporting structures can also be printed from a "fugitive material" which is easily removed. This allows almost any shape to be printed in any orientation.

Mechanical behavior

One key advantage of the robocasting additive manufacturing technique is its ability to utilize a wide range of feedstock “inks,” as shear-thinning ability is the only inherently required material property. As such, robocasting has seen diverse application among many disparate materials classes such as metallic foams,[6] pre-ceramic polymers,[7] and biological tissues.[8] This allows for a wide range of mechanical characteristics to be accessible through this technique, with additional tailoring possible through the use of ink fillers and varying extrusion parameters.

Filler effects

Micro- and nano-scale filler materials are commonly used to create composite feedstocks for robocasting and are available in a wide range of compositions, with morphologies typically falling into the broad categories of spheres, platelets, and filaments/tubes. Both composition and morphology play significant roles in the mechanical characteristics imparted by the filler. For example, the inclusion of stiff boron nitride nanobarbs within epoxy feedstock has been demonstrated to anisotropically increase overall composite strength and stiffness along the direction of fiber orientation due to their shape asymmetry,[9] while the inclusion of hollow glass microspheres within the same epoxy feedstock has been demonstrated to isotropically improve specific strength by significantly reducing total density of the composite.[10]

In addition to shape, differing size regimes within fillers of the same morphology have been demonstrated to yield significant changes in mechanical properties. For epoxy-carbon fiber composite systems of identical composition, flexural strength has been shown to generally decrease with decreasing fiber length. However, shorter fibers have also been demonstrated to produce better overall printing behavior during the robocasting process as increasing length also increases the likelihood of jamming within the extruder; higher print fidelity as seen for the shorter fibers generally results in greater reproducibility of mechanical behavior. In addition, very long fibers have exhibited a tendency to break during extrusion, essentially imparting a de facto size cap on filament-type fillers used in robocasting.[11]

Extrusion effects

Extrusion phenomena inherently tied into the robocasting technique have been shown to have appreciable effects on the mechanical behavior of resulting parts. One of the most significant is the alignment of filler materials within composite feedstocks during deposition, which is enhanced as filler anisotropy increases. This alignment phenomenon also becomes more pronounced with decreasing nozzle diameter and increasing ink deposition speed, as these factors increase the effective shearing experienced by fillers suspended within the feedstock in accordance with Jeffrey-Hamel flow theory. Fillers are thus driven to align parallel to the extrusion pathway, imparting significant anisotropic character within the finished part. This anisotropy can be further enhanced by prescribing extrusion pathways that remain parallel throughout the manufacturing process; conversely, prescribing extrusion pathways that exhibit differing orientations, such as 90° “logpile” rotation between layers, can mitigate this effect.[12]

Selection of deposition pathing can also be exploited to alter mechanical characteristics of robocasting products, such as in the case of non-dense and graded components. The creation of open lattice-type structures via robocasting is widespread and enables optimization of specific strength and stiffness by reducing the cross-sectional footprint of a given feedstock material while retaining much of its bulk mechanical integrity.[13][14][15] In addition, the creation of unique deposition pathing via finite element analysis of a desired structure can generate dynamically-graded geometries optimized for specific applications.[16]

Applications

An array of simple alumina geometries created by robocasting.

The technique can produce non-dense ceramic bodies which can be fragile and must be sintered before they can be used for most applications, analogous to a wet clay ceramic pot before being fired. A wide variety of different geometries can be formed from the technique, from solid monolithic parts[2] to intricate microscale "scaffolds",[17] and tailored composite materials.[18] A heavily-researched application for robocasting is in the production of biologically compatible tissue implants. "Woodpile" stacked lattice structures can be formed quite easily which allow bone and other tissues in the human body to grow and eventually replace the transplant. With various medical scanning techniques the precise shape of the missing tissue was established and input into 3D modelling software and printed. Calcium phosphate glasses and hydroxyapatite have been extensively explored as candidate materials due to their biocompatibility and structural similarity to bone.[19] Other potential applications include the production of specific high surface area structures, such as catalyst beds or fuel cell electrolytes.[20] Advanced metal matrix- and ceramic matrix- load bearing composites can be formed by infiltrating woodpile bodies with molten glasses, alloys or slurries.

Robocasting has also been used to deposit polymer and sol-gel inks through much finer nozzle diameters (less than 2 μm) than is possible with ceramic inks.[4]

References

  1. ^ Terminology for Additive Manufacturing - General Principles - Terminology, West Conshohocken, PA: ASTM International, doi:10.1520/isoastm52900-15
  2. ^ a b Feilden, Ezra (2016). "Robocasting of structural ceramic parts with hydrogel inks". Journal of the European Ceramic Society. 36 (10): 2525–2533. doi:10.1016/j.jeurceramsoc.2016.03.001. hdl:10044/1/29973.
  3. ^ Stuecker, J (2004). "Advanced Support Structures for Enhanced Catalytic Activity". Industrial & Engineering Chemistry Research. 43 (1): 51–55. doi:10.1021/ie030291v.
  4. ^ a b Xu, Mingjie; Gratson, Gregory M.; Duoss, Eric B.; Shepherd, Robert F.; Lewis, Jennifer A. (2006). "Biomimetic silicification of 3D polyamine-rich scaffolds assembled by direct ink writing". Soft Matter. 2 (3): 205–209. Bibcode:2006SMat....2..205X. doi:10.1039/b517278k. ISSN 1744-683X. PMID 32646146.
  5. ^ Smay, James E.; Cesarano, Joseph; Lewis, Jennifer A. (2002). "Colloidal Inks for Directed Assembly of 3-D Periodic Structures". Langmuir. 18 (14): 5429–5437. doi:10.1021/la0257135. ISSN 0743-7463.
  6. ^ Kenel, C.; Geisendorfer, N. R.; Shah, R. N.; Dunand, D. C. (2021-01-01). "Hierarchically-porous metallic scaffolds via 3D extrusion and reduction of oxide particle inks with salt space-holders". Additive Manufacturing. 37: 101637. doi:10.1016/j.addma.2020.101637. ISSN 2214-8604. S2CID 224925788.
  7. ^ US20230121100A1, Compton, Brett Gibson; Kemp, James William & Romberg, Stian Kristov et al., "Preceramic polymer 3d-printing formulation comprising fumed alumina", issued 2023-04-20 
  8. ^ Baniasadi, Hossein; Ajdary, Rubina; Trifol, Jon; Rojas, Orlando J.; Seppälä, Jukka (2021-08-15). "Direct ink writing of aloe vera/cellulose nanofibrils bio-hydrogels". Carbohydrate Polymers. 266: 118114. doi:10.1016/j.carbpol.2021.118114. ISSN 0144-8617. PMID 34044931. S2CID 235229991.
  9. ^ Compton, Brett G.; Wilt, Jackson K.; Kemp, James W.; Hmeidat, Nadim S.; Maness, Samantha R.; Edmond, Mark; Wilcenski, Steve; Taylor, Jason (2021-04-01). "Mechanical and thermal properties of 3D-printed epoxy composites reinforced with boron nitride nanobarbs". MRS Communications. 11 (2): 100–105. doi:10.1557/s43579-020-00005-9. ISSN 2159-6867. S2CID 234142021.
  10. ^ US20210047490A1, Compton, Brett Gibson; Maness, Samantha & Pack, Robert, "Low density syntactic foams via material extrusion additive manufacturing", issued 2021-02-18 
  11. ^ Hmeidat, Nadim S.; Elkins, Daniel S.; Peter, Hutchison R.; Kumar, Vipin; Compton, Brett G. (2021-10-15). "Processing and mechanical characterization of short carbon fiber-reinforced epoxy composites for material extrusion additive manufacturing". Composites Part B: Engineering. 223: 109122. doi:10.1016/j.compositesb.2021.109122. ISSN 1359-8368.
  12. ^ Hmeidat, Nadim S.; Pack, Robert C.; Talley, Samantha J.; Moore, Robert B.; Compton, Brett G. (2020-08-01). "Mechanical anisotropy in polymer composites produced by material extrusion additive manufacturing". Additive Manufacturing. 34: 101385. doi:10.1016/j.addma.2020.101385. ISSN 2214-8604. S2CID 225351017.
  13. ^ Elsayed, Hamada; Rebesan, Pietro; Giacomello, Giovanni; Pasetto, Marco; Gardin, Chiara; Ferroni, Letizia; Zavan, Barbara; Biasetto, Lisa (2019-10-01). "Direct ink writing of porous titanium (Ti6Al4V) lattice structures". Materials Science and Engineering: C. 103: 109794. doi:10.1016/j.msec.2019.109794. ISSN 0928-4931. PMID 31349412. S2CID 182555527.
  14. ^ Franchin, Giorgia; Wahl, Larissa; Colombo, Paolo (October 2017). "Direct ink writing of ceramic matrix composite structures". Journal of the American Ceramic Society. 100 (10): 4397–4401. doi:10.1111/jace.15045.
  15. ^ Compton, Brett G.; Lewis, Jennifer A. (2014). "3D-Printing of Lightweight Cellular Composites". Advanced Materials. 26 (34): 5930–5935. Bibcode:2014AdM....26.5930C. doi:10.1002/adma.201401804. PMID 24942232. S2CID 7816025.
  16. ^ Hmeidat, Nadim S.; Brown, Bailey; Jia, Xiu; Vermaak, Natasha; Compton, Brett (2021-01-01). "Effects of infill patterns on the strength and stiffness of 3D printed topologically optimized geometries". Rapid Prototyping Journal. 27 (8): 1467–1479. doi:10.1108/RPJ-11-2019-0290. ISSN 1355-2546. S2CID 238782971.
  17. ^ Lewis, Jennifer (2006). "Direct Ink Writing of 3D Functional Materials". Advanced Functional Materials. 16 (17): 2193–2204. doi:10.1002/adfm.200600434. S2CID 28385714.
  18. ^ Feilden, Ezra; Ferraro, Claudio; Zhang, Qinghua; García-Tuñón, Esther; D’Elia, Eleonora; Giuliani, Finn; Vandeperre, Luc; Saiz, Eduardo (2017). "3D Printing Bioinspired Ceramic Composites". Scientific Reports. 7 (1): 13759. Bibcode:2017NatSR...713759F. doi:10.1038/s41598-017-14236-9. ISSN 2045-2322. PMC 5653810. PMID 29062036.
  19. ^ Miranda, P (2008). "Mechanical properties of calcium phosphate scaffolds fabricated by robocasting". Journal of Biomedical Materials Research Part A. 85 (1): 218–227. doi:10.1002/jbm.a.31587. PMID 17688280.
  20. ^ Kuhn, M.; Napporn, T.; Meunier, M.; Vengallatore, S.; Therriault, D. (2008). "Direct-write microfabrication of single-chamber micro solid oxide fuel cells". Journal of Micromechanics and Microengineering. 18 (1): 015005. Bibcode:2008JMiMi..18a5005K. doi:10.1088/0960-1317/18/1/015005. S2CID 55927188.

Read other articles:

Fantasy! JūichiAlbum studio karya Morning MusumeDirilis1 Desember 2010Direkam2010GenreJapanese popDurasi1:39:18LabelZetima RecordsProduserTsunkuKronologi Morning Musume 10 My Me(2010)10 My Me2010 Fantasy! Jūichi(2010) 12, Smart(2011)12, Smart2011 Singel dalam album Fantasy! Jūichi Seishun CollectionDirilis: 9 Juni, 2010 Onna to Otoko no Lullaby GameDirilis: 17 November 2010 Fantasy! Jūichi (Fantasy! 拾壱code: ja is deprecated , Fantasy! Sebelas) adalah album studio kesebelas grup id...

 

Hewan berkuku genap (Artiodactyla) Periode 55–0 jtyl PreЄ Є O S D C P T J K Pg N Eosen awal - sekarang Artiodactyla Dari kiri ke kanan, atas ke bawah: jerapah, bison amerika, rusa merah, unta arab, babi, dan paus pembunuh.TaksonomiKerajaanAnimaliaFilumChordataKelasMammaliaSuperordoParaxoniaOrdoArtiodactyla Owen, 1848 Tata namaSinonim taksonCetartiodactyla (en) Keluarga Antilocapridae Bovidae Camelidae Cervidae Giraffidae Hippopotamidae Moschidae Suidae Tayassuidae Tragulidae lbs Hewa...

 

جيل فيسيير (بالفرنسية: Gilles Veissière)‏  معلومات شخصية الميلاد 18 سبتمبر 1959 (العمر 64 سنة)نيس مواطنة فرنسا  مناصب [1]   عضو منذ30 مارس 2014  فترة برلمانية دورة انتخابات البلديات المشتركة 2014-2020  [لغات أخرى]‏  الحياة العملية المهنة حكم كرة قدم،  وسياسي[1]  ...

Cet article est une ébauche concernant Niue. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. La culture de Niue ou culture niuéenne regroupe l'ensemble des productions passées et présentes issue de traditions de l'île de Niue ou de personnes originaires de ce micro-État du Pacifique. Langue Niue a une langue autochtone, le niuéen. L'anglais y est également parlé. Arts traditionnels Niue appartient à l'...

 

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: コルク – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2017年4月) コルクを打ち抜いて作った瓶の栓 コルク(木栓、�...

 

District of Hong Kong This article is about the administrative district. For the area, see Wan Chai. District in Hong Kong, ChinaWan Chai 灣仔區DistrictDay view of Wan Chai DistrictWan ChaiLocation in Hong KongShow map of Hong KongWan ChaiWan Chai (Asia)Show map of AsiaCoordinates: 22°16′47″N 114°10′18″E / 22.27968°N 114.17168°E / 22.27968; 114.17168CountryChinaSARHong KongRegionHong Kong IslandConstituencies11Government • District Council Ch...

Comic strip by American cartoonist Alison Bechdel Dykes to Watch Out ForSeveral characters in Dykes to Watch Out For. From left to right: Mo, Sydney, Ginger, and Samia.Author(s)Alison BechdelWebsitedykestowatchoutfor.comCurrent status/scheduleSporadic updatesLaunch date1983End dateMay 14, 2008Genre(s)Lesbian, Women, Adults, Politics Dykes to Watch Out For (sometimes DTWOF) was a weekly comic strip by Alison Bechdel. The strip, which ran from 1983 to 2008, was one of the earliest ongoing repre...

 

CA SportsCompany typePrivateIndustrySports equipment, textileFounded1958; 66 years ago (1958)FounderCharaghdin Abdul RasheedHeadquartersSialkot, PakistanArea servedWorldwideKey peopleZahid Javed(CEO)ProductsCricket clothing and equipment, athletic shoes, accessories [1]Number of employees500+Websitecasports.com.pk CA Sports is a Pakistani sports equipment manufacturing company headquartered in Sialkot, Punjab, focused on cricket clothing and equipment. Founded in 19...

 

مبخرةالنوع مبخرة الاستعمالالاستخدام لبان — كرة التبخير تعديل - تعديل مصدري - تعديل ويكي بيانات المِبْخَرة[1][2] هي إناء مصنوع لحرق البخور أو العطر بشكله الصلب. تتنوع تنوعاً كبيراً في الحجم والشكل ومواد التصنيع، وقد استخدمت منذ العصور القديمة في جميع أنحاء العالم. في...

1980s United States Republican Party political coalition This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Reagan coalition – news · newspapers · books · scholar · JSTOR (November 2023) (Learn how and when to remove this message) Reagan campaigning for David Durenberger in the 1982 U.S. Senate election in Minn...

 

Ministry in Argentina Ministry of Human CapitalMinisterio de Capital HumanoSeat of the Ministry in Buenos AiresMinistry overviewFormed10 December 2023; 7 months ago (2023-12-10)Preceding agenciesMinistry of CultureMinistry of EducationMinistry of LabourMinistry of Social DevelopmentJurisdictionGovernment of ArgentinaMinister responsibleSandra PettovelloChild Ministry Fondo Nacional de las Artes Secretariat of Culture Secretariat of Labour Websiteargentina.gob.ar/capitalhuman...

 

Russian politician In this name that follows Eastern Slavic naming customs, the patronymic is Borisovich and the family name is Veller. Alexey VellerАлексей ВеллерMember of the State Duma for Krasnoyarsk KraiIncumbentAssumed office 12 October 2021Preceded byRaisa KarmazinaConstituencyYeniseysk (No. 56)Member of the State Duma for Murmansk OblastIn office5 October 2016 – 12 October 2021Preceded byconstituency re-establishedSucceeded byTatiana KusaykoConstituency...

Medication AldoxorubicinIdentifiers IUPAC name N-[[1-[(2S,4S)-4-[(2R,4S,5S,6S)-4-Amino-5-hydroxy-6-methyloxan-2-yl]oxy-2,5,12-trihydroxy-7-methoxy-6,11-dioxo-3,4-dihydro-1H-tetracen-2-yl]-2-hydroxyethylidene]amino]-6-(2,5-dioxopyrrol-1-yl)hexanamide CAS Number1361644-26-9PubChem CID71300693ChemSpider7986464UNIIC28MV4IM0BKEGGD10383ECHA InfoCard100.244.879 Chemical and physical dataFormulaC37H42N4O13Molar mass750.758 g·mol−13D model (JSmol)Interactive image SMILES C[C@H]1[C@H]([C@H](C[C...

 

Sternwheel-driven steamboat Mascot loading cordwood fuel circa 1900, probably on the Lewis River. History NameMascot OwnerJacob Kamm; Lewis and Lake River Co.; Vancouver Trans. Co. RouteLewis, Lake, lower Columbia, and lower Willamette rivers BuilderCharles Bureau or Jacob Kamm In service1890 Out of service1911 IdentificationUS #92253 (1890–1908) #204927(1908–1911) FateBurned in Lewis River General characteristics TypeInland river steamer, multiple use Tonnage267.35 GT, 199.46 RT (1890–...

 

Loosdrecht Héraldique Drapeau Le hameau de Boomhoek dans l'ancienne commune de Loosdrecht, sur les Loosdrechtse Plassen, à l'est de Muyeveld. Administration Pays Pays-Bas Province Hollande-Septentrionale Démographie Population 9 155 hab. (1er janvier 2021) Géographie Coordonnées 52° 11′ 57″ nord, 5° 08′ 03″ est Histoire Formation Avant 1800 Fusionnée dans Wijdemeren (1er janvier 2002) Localisation Carte de localisation de l'ancienn...

Hong Kong film producer and former actor (born 1948) In this Hong Kong name, the surname is Heung. In accordance with Hong Kong custom, the Western-style name is Charles Heung and the Chinese-style name is Heung Wah-keung. Charles HeungHeung in 2018Born (1948-12-16) 16 December 1948 (age 75)British Hong KongOccupation(s)Film producer, film presenter, Chairman of China Star Entertainment Ltd.Spouse(s)Betty Ting(1976–1978, 1 daughter)Tiffany Chen(1980–, 2 sons)Children3ParentHeung Chin...

 

Questa voce sugli argomenti linguisti e insegnanti è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti dei progetti di riferimento 1, 2. Monumento in onore di Adam Bohorič a Lubiana Adam Bohorič (Brestanica (al tempo Reichenburg), 1520 circa – Alsazia, 20 novembre 1598) è stato un linguista e docente sloveno, autore della prima grammatica della lingua slovena[1]. Arcticae horulae succisivae Bohorič è nato nella cit...

 

Ne doit pas être confondu avec l'Alianza FC, club du Panama. Cet article est une ébauche concernant un club de football et le Salvador. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations du projet football. Alianza FC Généralités Fondation 1958 Couleurs bleu ciel et blanc Stade Stade Cuscatlán(53 400 places) Siège San Salvador Entraîneur Eduardo Lara Palmarès principal National[1] Championnat du Salvador (18) International[1] Ligue d...

عبد الله السعيد معلومات شخصية الاسم الكامل عبد الله محمود سعيد محمد الميلاد 13 يوليو 1985 (العمر 39 سنة)الإسماعيلية ، مصر الطول 1.76 م (5 قدم 9 بوصة) مركز اللعب وسط الجنسية مصر  معلومات النادي النادي الحالي الزمالك الرقم 19 مسيرة الشباب سنوات فريق الإسماعيلي تحت 23 المسيرة...

 

Il principio del danno (in inglese harm principle) è un principio che stabilisce la relazione tra autorità e libertà. John Stuart Mill esporrà questo principio nel Saggio sulla libertà[1]: «Lo scopo di questo saggio è formulare un principio molto semplice, che determini in assoluto i rapporti di coartazione e controllo tra società e individuo, sia che li si eserciti mediante la forza fisica, sotto forma di pene legali, sia mediante la coazione morale dell'opinione pubblica. Il...