Module homomorphism

In algebra, a module homomorphism is a function between modules that preserves the module structures. Explicitly, if M and N are left modules over a ring R, then a function is called an R-module homomorphism or an R-linear map if for any x, y in M and r in R,

In other words, f is a group homomorphism (for the underlying additive groups) that commutes with scalar multiplication. If M, N are right R-modules, then the second condition is replaced with

The preimage of the zero element under f is called the kernel of f. The set of all module homomorphisms from M to N is denoted by . It is an abelian group (under pointwise addition) but is not necessarily a module unless R is commutative.

The composition of module homomorphisms is again a module homomorphism, and the identity map on a module is a module homomorphism. Thus, all the (say left) modules together with all the module homomorphisms between them form the category of modules.

Terminology

A module homomorphism is called a module isomorphism if it admits an inverse homomorphism; in particular, it is a bijection. Conversely, one can show a bijective module homomorphism is an isomorphism; i.e., the inverse is a module homomorphism. In particular, a module homomorphism is an isomorphism if and only if it is an isomorphism between the underlying abelian groups.

The isomorphism theorems hold for module homomorphisms.

A module homomorphism from a module M to itself is called an endomorphism and an isomorphism from M to itself an automorphism. One writes for the set of all endomorphisms of a module M. It is not only an abelian group but is also a ring with multiplication given by function composition, called the endomorphism ring of M. The group of units of this ring is the automorphism group of M.

Schur's lemma says that a homomorphism between simple modules (modules with no non-trivial submodules) must be either zero or an isomorphism. In particular, the endomorphism ring of a simple module is a division ring.

In the language of the category theory, an injective homomorphism is also called a monomorphism and a surjective homomorphism an epimorphism.

Examples

  • The zero map MN that maps every element to zero.
  • A linear transformation between vector spaces.
  • .
  • For a commutative ring R and ideals I, J, there is the canonical identification
given by . In particular, is the annihilator of I.
  • Given a ring R and an element r, let denote the left multiplication by r. Then for any s, t in R,
    .
That is, is right R-linear.
  • For any ring R,
    • as rings when R is viewed as a right module over itself. Explicitly, this isomorphism is given by the left regular representation .
    • Similarly, as rings when R is viewed as a left module over itself. Textbooks or other references usually specify which convention is used.
    • through for any left module M.[1] (The module structure on Hom here comes from the right R-action on R; see #Module structures on Hom below.)
    • is called the dual module of M; it is a left (resp. right) module if M is a right (resp. left) module over R with the module structure coming from the R-action on R. It is denoted by .
  • Given a ring homomorphism RS of commutative rings and an S-module M, an R-linear map θ: SM is called a derivation if for any f, g in S, θ(f g) = f θ(g) + θ(f) g.
  • If S, T are unital associative algebras over a ring R, then an algebra homomorphism from S to T is a ring homomorphism that is also an R-module homomorphism.

Module structures on Hom

In short, Hom inherits a ring action that was not used up to form Hom. More precise, let M, N be left R-modules. Suppose M has a right action of a ring S that commutes with the R-action; i.e., M is an (R, S)-module. Then

has the structure of a left S-module defined by: for s in S and x in M,

It is well-defined (i.e., is R-linear) since

and is a ring action since

.

Note: the above verification would "fail" if one used the left R-action in place of the right S-action. In this sense, Hom is often said to "use up" the R-action.

Similarly, if M is a left R-module and N is an (R, S)-module, then is a right S-module by .

A matrix representation

The relationship between matrices and linear transformations in linear algebra generalizes in a natural way to module homomorphisms between free modules. Precisely, given a right R-module U, there is the canonical isomorphism of the abelian groups

obtained by viewing consisting of column vectors and then writing f as an m × n matrix. In particular, viewing R as a right R-module and using , one has

,

which turns out to be a ring isomorphism (as a composition corresponds to a matrix multiplication).

Note the above isomorphism is canonical; no choice is involved. On the other hand, if one is given a module homomorphism between finite-rank free modules, then a choice of an ordered basis corresponds to a choice of an isomorphism . The above procedure then gives the matrix representation with respect to such choices of the bases. For more general modules, matrix representations may either lack uniqueness or not exist.

Defining

In practice, one often defines a module homomorphism by specifying its values on a generating set. More precisely, let M and N be left R-modules. Suppose a subset S generates M; i.e., there is a surjection with a free module F with a basis indexed by S and kernel K (i.e., one has a free presentation). Then to give a module homomorphism is to give a module homomorphism that kills K (i.e., maps K to zero).

Operations

If and are module homomorphisms, then their direct sum is

and their tensor product is

Let be a module homomorphism between left modules. The graph Γf of f is the submodule of MN given by

,

which is the image of the module homomorphism MMN, x → (x, f(x)), called the graph morphism.

The transpose of f is

If f is an isomorphism, then the transpose of the inverse of f is called the contragredient of f.

Exact sequences

Consider a sequence of module homomorphisms

Such a sequence is called a chain complex (or often just complex) if each composition is zero; i.e., or equivalently the image of is contained in the kernel of . (If the numbers increase instead of decrease, then it is called a cochain complex; e.g., de Rham complex.) A chain complex is called an exact sequence if . A special case of an exact sequence is a short exact sequence:

where is injective, the kernel of is the image of and is surjective.

Any module homomorphism defines an exact sequence

where is the kernel of , and is the cokernel, that is the quotient of by the image of .

In the case of modules over a commutative ring, a sequence is exact if and only if it is exact at all the maximal ideals; that is all sequences

are exact, where the subscript means the localization at a maximal ideal .

If are module homomorphisms, then they are said to form a fiber square (or pullback square), denoted by M ×B N, if it fits into

where .

Example: Let be commutative rings, and let I be the annihilator of the quotient B-module A/B (which is an ideal of A). Then canonical maps form a fiber square with

Endomorphisms of finitely generated modules

Let be an endomorphism between finitely generated R-modules for a commutative ring R. Then

  • is killed by its characteristic polynomial relative to the generators of M; see Nakayama's lemma#Proof.
  • If is surjective, then it is injective.[2]

See also: Herbrand quotient (which can be defined for any endomorphism with some finiteness conditions.)

Variant: additive relations

An additive relation from a module M to a module N is a submodule of [3] In other words, it is a "many-valued" homomorphism defined on some submodule of M. The inverse of f is the submodule . Any additive relation f determines a homomorphism from a submodule of M to a quotient of N

where consists of all elements x in M such that (x, y) belongs to f for some y in N.

A transgression that arises from a spectral sequence is an example of an additive relation.

See also

Notes

  1. ^ Bourbaki, Nicolas (1998), "Chapter II, §1.14, remark 2", Algebra I, Chapters 1–3, Elements of Mathematics, Springer-Verlag, ISBN 3-540-64243-9, MR 1727844
  2. ^ Matsumura, Hideyuki (1989), "Theorem 2.4", Commutative Ring Theory, Cambridge Studies in Advanced Mathematics, vol. 8 (2nd ed.), Cambridge University Press, ISBN 0-521-36764-6, MR 1011461
  3. ^ Mac Lane, Saunders (1995), Homology, Classics in Mathematics, Springer-Verlag, p. 52, ISBN 3-540-58662-8, MR 1344215

Read other articles:

HandwrittenAlbum studio karya Shawn MendesDirilis14 April 2015DirekamMei 2014 - Maret 2015StudioNoble Street Studios (Toronto, Ontario)GenrePop rock[1]Durasi46:29LabelIslandProduser Shawn Mendes Teddy Geiger Scott Harris Martin Terefe Ido Zmishlany Kronologi Shawn Mendes Handwritten(2015) Illuminate(2015) Singel dalam album Handwritten Life of the PartyDirilis: 25 Juni 2014 Something BigDirilis: 7 November 2014 StitchesDirilis: 5 Mei 2015 I Know What You Did Last SummerDirilis: 18...

 

2016 single by NCT UThe 7th SenseSingle by NCT Ufrom the album NCT 2018 Empathy ReleasedApril 9, 2016 (2016-04-09)Recorded2016Studio SM Blue Cup Studio Ingrid Studio Genre Hip hop future bass[1] Length3:34LabelSMComposer(s) Timothy Bos Bullock Jeremy Tay Jasper MZMC Michael Jiminez Sara Forsberg Leven Kali Lyricist(s) January 8th Kim Dong-hyun Cho Jin-joo Taeyong Mark Producer(s) Timothy Bos Bullock Jeremy Tay Jasper NCT U singles chronology The 7th Sense (2016) Wit...

 

The Dell Informasi stadionPemilikSouthampton Leisure Holdings PLCOperatorSouthampton F.C.LokasiLokasiMilton Road, Southampton, InggrisKoordinat50°54′53″N 001°24′47″W / 50.91472°N 1.41306°W / 50.91472; -1.41306 (The Dell)Koordinat: 50°54′53″N 001°24′47″W / 50.91472°N 1.41306°W / 50.91472; -1.41306 (The Dell)KonstruksiMulai pembangunan1897DibukaSeptember 1898Diperbesar1927, 1929, 1980-an, 1990-anDitutupMei 2...

Administrative division of Nazi Germany Gau Upper SilesiaGau of Nazi Germany1941–1945 FlagUpper Silesia in gray, bordering the General GovernmentCapitalKattowitzGovernmentGauleiter • 1941–1945 Fritz Bracht History • Establishment 27 January 1941• Disestablishment 1 August 1945 Preceded by Succeeded by Gau Silesia Poland Czechoslovakia Today part ofPolandCzech Republic The Gau Upper Silesia (German: Gau Oberschlesien) was an administrative division of Naz...

 

2019 biographical film See also: Professor and the Madman (band) The Professor and the MadmanTheatrical release posterDirected byP. B. ShemranScreenplay by Todd Komarnicki P. B. Shemran Based onThe Surgeon of Crowthorneby Simon WinchesterProduced by Nicolas Chartier Gastón Pavlovich Mel Gibson Starring Mel Gibson Sean Penn Natalie Dormer Eddie Marsan Jennifer Ehle Jeremy Irvine David O'Hara Ioan Gruffudd Stephen Dillane Steve Coogan CinematographyKasper TuxenEdited byDino JonsaterMusic byBea...

 

John Bennett HerringtonHerrington pada November 2009Lahir(1958-09-14)14 September 1958Wetumka, Oklahoma, A.S.StatusRetiredKebangsaanAmericanPekerjaanpilot angkatan laut A.S., pilot tesKarier luar angkasaNASA AstronautPangkatKomandan, USNWaktu di luar angkasa13d 18h 47m[1]SeleksiGrup NASA 1996MisiSTS-113Lambang misi John Bennett Herrington (kelahiran 14 September 1958) adalah seorang pensiunan aviator angkatan laut Amerika Serikat dan mantan astronaut NASA. Pada 2002, Herrington menja...

Valle dell'AngeloKomuneComune di Valle dell'AngeloLokasi Valle dell'Angelo di Provinsi SalernoNegaraItaliaWilayah CampaniaProvinsiSalerno (SA)Luas[1] • Total36,6 km2 (14,1 sq mi)Ketinggian[2]620 m (2,030 ft)Populasi (2016)[3] • Total280 • Kepadatan7,7/km2 (20/sq mi)Zona waktuUTC+1 (CET) • Musim panas (DST)UTC+2 (CEST)Kode pos84070Kode area telepon0974Situs webhttp://www.comune.vallemosso...

 

土库曼斯坦总统土库曼斯坦国徽土库曼斯坦总统旗現任谢尔达尔·别尔德穆哈梅多夫自2022年3月19日官邸阿什哈巴德总统府(Oguzkhan Presidential Palace)機關所在地阿什哈巴德任命者直接选举任期7年,可连选连任首任萨帕尔穆拉特·尼亚佐夫设立1991年10月27日 土库曼斯坦土库曼斯坦政府与政治 国家政府 土库曼斯坦宪法 国旗 国徽 国歌 立法機關(英语:National Council of Turkmenistan) ...

 

  关于与「內閣總理大臣」標題相近或相同的条目页,請見「內閣總理大臣 (消歧義)」。 日本國內閣總理大臣內閣總理大臣紋章現任岸田文雄自2021年10月4日在任尊称總理、總理大臣、首相、阁下官邸總理大臣官邸提名者國會全體議員選出任命者天皇任期四年,無連任限制[註 1]設立法源日本國憲法先前职位太政大臣(太政官)首任伊藤博文设立1885年12月22日,...

Festival Layang-Layang BaliLayang-layang Bebean (berbentuk ikan) diterbangkan di Festival Layang-Layang BaliJenisLayang-layangTanggalsetiap bulan JuliFrekuensisetiap tahunLokasipantai Padang Galak, Sanur, BaliAcara berikutnyabelum ditentukan Festival Layang-Layang Bali adalah sebuah festival layang-layang internasional tahunan yang diadakan pada bulan Juli di daerah pantai Padang Galak, Sanur, Bali. Layang-layang tradisional raksasa (dengan lebar 4 meter dan panjang 10 meter) dibuat dan diter...

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (مارس 2016) علي نوير معلومات شخصية الميلاد سنة 1950 (العمر 73–74 سنة)  الحياة العملية المهنة شاعر  تعديل مصدري - تعدي...

 

LadybeardPegulat Rick Magarey dengan pesona Ladybeard-nyaNama lahirRichard MagareyLahir3 Agustus 1983 (umur 40)Adelaide, South Australia, AustraliaSitus webhttp://www.ladybeard.com/Karier gulat profesionalNama ringLadybeard[1]Richard Burn[1]Tinggi6 ft 0 in (183 cm)[1]Berat194 pon (88 kg)[1]Asal dariAdelaide, South AustraliaDebut2009 Richard Magarey adalah seorang pemeran pengganti Australia, dan dengan pesona lintas busana berjengg...

Line of tissue on the human penis Penile rapheThe course of the raphe from the scrotum to the tip of the penisDetailsPrecursorUrogenital foldsPart ofPenisIdentifiersLatinraphe penisAnatomical terminology[edit on Wikidata] The penile raphe is a visible line or ridge of tissue that runs on the ventral (urethral) side of the human penis beginning from the base of the shaft and ending in the prepuce between the penile frenulum.[1][2] The line is typically darker than the rest ...

 

Tottenham HotspurTên đầy đủTottenham Hotspur Football ClubBiệt danhThe Lilywhites (Hoa loa kèn)Tên ngắn gọnSpursThành lập5 tháng 9 năm 1882; 141 năm trước (1882-09-05), dưới tên Hotspur F.C.SânSân vận động Tottenham HotspurSức chứa62.850[1]Chủ sở hữuENIC International Ltd. (85,55%)Chủ tịch điều hànhDaniel LevyNgười quản lýAnge PostecoglouGiải đấuGiải bóng đá Ngoại hạng Anh2022–23Ngoại hạng...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Denmark–United Kingdom relations – news · newspapers · books · scholar · JSTOR (May 2021) (Learn how and when to remove this message) Bilateral relationsDanish-British relations Denmark United Kingdom British–Danish relations are foreign relations between t...

اتحاد أوقيانوسيا لكرة السلة ‌ المقر الرئيسي كانبرا، أستراليا تاريخ التأسيس 1969 منطقة الخدمة جزيرة أوقيانوسيا  العضوية 21 اللغات الرسمية الإنجليزية الموقع الرسمي www.fiba.basketball/oceania تعديل مصدري - تعديل   اتحاد أوقيانوسيا لكرة السلة أو فيبا أوقيانوسيا (بالإنكليزية: FIBA Oceania) ...

 

Supertall skyscraper in Shanghai, China 31°14′14″N 121°30′5″E / 31.23722°N 121.50139°E / 31.23722; 121.50139 Jin Mao Tower金茂大厦The Jin Mao Tower in April 2007General informationStatusCompletedTypeSkyscraper(incl. office, hotel, tourism, & retail)Architectural styleNeo-FuturismLocation88 Century AvenuePudong District, Shanghai 200121, ChinaConstruction started1994Completed1999CostUS$530 million (1999)HeightArchitectural420.5 meters (1,380 ft)...

 

See also: 2007 Major League Baseball season and 2007 Nippon Professional Baseball season The following are the baseball events of the year 2007 throughout the world. Overview of the events of 2007 in baseball Years in baseball ← 2004 2005 2006 2007 2008 2009 2010 → 2007 in sports Air sports American football Aquatic sports Association football Athletics Australian rules football Badminton Baseball Basketball Canadian football Chess Climbing Combat sports Sumo Cricket 2006–07 2007 2007�...

КоммунаФерьер-сюр-СишонFerrières-sur-Sichon Герб 46°01′34″ с. ш. 3°38′59″ в. д.HGЯO Страна  Франция Регион Овернь Департамент Алье Кантон Ле-Мейе-де-Монтань Мэр Jean-Marcel Lazzerini(2008–2014) История и география Площадь 38,58 км² Высота центра 397–980 м Часовой пояс UTC+1:00, летом UTC+2:00 Населе�...

 

「コルネット」のその他の用法については「コルネット (曖昧さ回避)」をご覧ください。 コルネット 各言語での名称 英 cornet 独 Kornet, Piston 仏 cornet à pistons 伊 cornetta B♭管ショートコルネット 分類 金管楽器 音域 B♭記譜 (上下とも一般的な音域を示す) この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上�...