Mapping cone (homological algebra)

In homological algebra, the mapping cone is a construction on a map of chain complexes inspired by the analogous construction in topology. In the theory of triangulated categories it is a kind of combined kernel and cokernel: if the chain complexes take their terms in an abelian category, so that we can talk about cohomology, then the cone of a map f being acyclic means that the map is a quasi-isomorphism; if we pass to the derived category of complexes, this means that f is an isomorphism there, which recalls the familiar property of maps of groups, modules over a ring, or elements of an arbitrary abelian category that if the kernel and cokernel both vanish, then the map is an isomorphism. If we are working in a t-category, then in fact the cone furnishes both the kernel and cokernel of maps between objects of its core.

Definition

The cone may be defined in the category of cochain complexes over any additive category (i.e., a category whose morphisms form abelian groups and in which we may construct a direct sum of any two objects). Let be two complexes, with differentials i.e.,

and likewise for

For a map of complexes we define the cone, often denoted by or to be the following complex:

on terms,

with differential

(acting as though on column vectors).

Here is the complex with and . Note that the differential on is different from the natural differential on , and that some authors use a different sign convention.

Thus, if for example our complexes are of abelian groups, the differential would act as

Properties

Suppose now that we are working over an abelian category, so that the homology of a complex is defined. The main use of the cone is to identify quasi-isomorphisms: if the cone is acyclic, then the map is a quasi-isomorphism. To see this, we use the existence of a triangle

where the maps are given by the direct summands (see Homotopy category of chain complexes). Since this is a triangle, it gives rise to a long exact sequence on homology groups:

and if is acyclic then by definition, the outer terms above are zero. Since the sequence is exact, this means that induces an isomorphism on all homology groups, and hence (again by definition) is a quasi-isomorphism.

This fact recalls the usual alternative characterization of isomorphisms in an abelian category as those maps whose kernel and cokernel both vanish. This appearance of a cone as a combined kernel and cokernel is not accidental; in fact, under certain circumstances the cone literally embodies both. Say for example that we are working over an abelian category and have only one nonzero term in degree 0:

and therefore is just (as a map of objects of the underlying abelian category). Then the cone is just

(Underset text indicates the degree of each term.) The homology of this complex is then

This is not an accident and in fact occurs in every t-category.

Mapping cylinder

A related notion is the mapping cylinder: let be a morphism of chain complexes, let further be the natural map. The mapping cylinder of f is by definition the mapping cone of g.

Topological inspiration

This complex is called the cone in analogy to the mapping cone (topology) of a continuous map of topological spaces : the complex of singular chains of the topological cone is homotopy equivalent to the cone (in the chain-complex-sense) of the induced map of singular chains of X to Y. The mapping cylinder of a map of complexes is similarly related to the mapping cylinder of continuous maps.

References

Read other articles:

Untuk lomba balap mobil sport, lihat Grand Prix Portland (balap mobil sport). Grand Prix PortlandIndyCar SeriesTempatPortland International RacewayPerusahaan sponsornoneLomba pertama1984Lomba pertamaICS2018Jarak tempuh21.604 mi (34.768 km)Jumlah putaran110Nama sebelumnyaStroh's 200 (1984–1985)Budweiser/G.I. Joe's 200 (1986, 1988–1992, 1994)Budweiser/G.I. Joe's 200 Presented by Texaco (1987, 1993, 1995–1999)Freightliner/G.I. Joe's 200 Presented by Texaco (2000–2001)G.I. Joe's...

 

Questa voce sugli argomenti cestisti statunitensi e allenatori di pallacanestro statunitensi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti dei progetti di riferimento 1, 2. Jody Conradt Nazionalità  Stati Uniti Pallacanestro Ruolo Allenatrice Termine carriera 1963 - giocatrice2007 - allenatrice Hall of fame Naismith Hall of Fame (1998)Women's Basketball Hall of Fame (1999) Carriera Giovanili 1959-1963 [[Bayl...

 

Study of the internal structure of plants Chloroplasts in leaf cells of the moss Mnium stellare Plant anatomy or phytotomy is the general term for the study of the internal structure of plants. Originally, it included plant morphology, the description of the physical form and external structure of plants, but since the mid-20th century, plant anatomy has been considered a separate field referring only to internal plant structure.[1][2] Plant anatomy is now frequently investiga...

† Человек прямоходящий Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:Синапсиды�...

 

Indian politician Pon RadhakrishnanMinister of State for FinanceIn office3 September 2017 – 24 May 2019Prime MinisterNarendra ModiMinisterArun JaitleyPreceded byArjun Ram MeghwalSucceeded byAnurag ThakurMinister of State for Road Transport and HighwaysIn office9 November 2014 – 3 September 2017Prime MinisterNarendra ModiMinisterNitin GadkariPreceded byKrishan Pal GurjarSucceeded byV. K. SinghIn office8 September 2003 – 22 May 2004Prime MinisterAtal Bihari Vajp...

 

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: コルク – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2017年4月) コルクを打ち抜いて作った瓶の栓 コルク(木栓、�...

Nicky Hofs Informasi pribadiNama lengkap Nicky HofsTanggal lahir 17 Mei 1983 (umur 40)Tempat lahir Arnhem, BelandaTinggi 1,70 m (5 ft 7 in)Posisi bermain GelandangInformasi klubKlub saat ini VitesseNomor 7Karier junior1988–1995 Arnhemse Boys1995–2001 VitesseKarier senior*Tahun Tim Tampil (Gol)2001–2004 Vitesse 69 (15)2004–2009 Feyenoord 68 (21)2008–2009 → Vitesse (pinjaman) 30 (7)2009–2010 Vitesse 31 (1)2010–2011 AEL Limassol 14 (0)2011– Vitesse 27 (5)Ti...

 

This article is about the Agents of S.H.I.E.L.D. episode. For the political term, see Sedition Caucus. 19th episode of the 2nd season of Agents of S.H.I.E.L.D. The Dirty Half DozenAgents of S.H.I.E.L.D. episodeThe Art of Evolution poster for the episode.Episode no.Season 2Episode 19Directed byKevin TancharoenWritten by Brent Fletcher Drew Z. Greenberg Produced by Jed Whedon Maurissa Tancharoen Jeffrey Bell Editing byJoshua CharsonOriginal air dateApril 28, 2015 (2015-04-28...

 

John Barly, D.D. was a priest and academic at the end of the 15th century and the beginning of the 16th.[1] Barly was educated at Gonville Hall, Cambridge graduating B.A. in 1461 and M.A. in 1465. He was a Fellow of Gonville from 1466 to 1483; and held livings at Barningham Wynter, Mattishall and Winterton. He was Master of Gonville (and Rector of St Michael Coslany, Norwich) from 1483 until his death in 1504.[2] References ^ Alumni Cantabrigienses: A Biographical List of All...

Platìcomune Platì – Veduta LocalizzazioneStato Italia Regione Calabria Città metropolitana Reggio Calabria AmministrazioneSindacoRosario Sergi (lista civica) dal 22-9-2020 TerritorioCoordinate38°13′N 16°03′E / 38.216667°N 16.05°E38.216667; 16.05 (Platì)Coordinate: 38°13′N 16°03′E / 38.216667°N 16.05°E38.216667; 16.05 (Platì) Altitudine300 m s.l.m. Superficie50,87 km² Abitanti3 704[1]&...

 

Norwegian footballer (born 1972) Sigurd Rushfeldt Rushfeldt with Tromsø in 2008Personal informationFull name Sigurd RushfeldtDate of birth (1972-12-11) 11 December 1972 (age 51)Place of birth Vadsø, NorwayHeight 1.87 m (6 ft 2 in)Position(s) StrikerYouth career Vadsø Turn NorildSenior career*Years Team Apps (Gls)1992–1996 Tromsø 75 (34)1995 → Birmingham City (loan) 7 (0)1996–1999 Rosenborg 66 (67)1999–2002 Racing Santander 42 (5)2001 → Rosenborg (loan) 10 (6)...

 

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)&#...

Place where milk is stored and where butter and cheese are made or sold For the descriptor of convenience stores in New Zealand, see Dairy (store). For other uses, see Dairy (disambiguation). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Dairy – news · newspapers · books · scholar · JSTOR (January 2023) (L...

 

هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (يونيو 2016) علي بن أحمد النسوي معلومات شخصية اسم الولادة أبو الحسن علي بن أحمد النسوي  ال...

 

Mountain in Nevada, United States For other mountains by this name, see Wheeler Peak (disambiguation). Wheeler PeakWheeler Peak, looking east-southeast in late afternoon lightHighest pointElevation13,065 ft (3,982 m) NAVD 88[1]Prominence7,563 ft (2,305 m)[2]ListingNorth America prominent peaks 53rdNorth America isolated peaks 51stNevada county high points 2ndGreat Basin Peaks List[3]Coordinates38°59′10″N 114°18′48″W ...

Italian actor (1897–1945) Angelo FerrariBorn(1897-08-14)14 August 1897Rome, ItalyDied15 June 1945(1945-06-15) (aged 47)Niederlehme, GermanyNationalityItalianOccupationActorYears active1916-1945 Angelo Ferrari (14 August 1897 – 15 June 1945) was an Italian actor known for his work in German cinema. Selected filmography The Nude Woman (1922) The Green Manuela (1923) Samson (1923) The Faces of Love (1924) Prater (1924) The Circus Princess (1925) Jealousy (1925) The Golden Calf (192...

 

Japanese figure skater Daisuke MurakamiDaisuke Murakami at 2015 Grand Prix of Figure Skating FinalBorn (1991-01-15) January 15, 1991 (age 33)Kanagawa, JapanHeight165 cm (5 ft 5 in)Figure skating careerCountryJapanCoachFrank Carroll Kumiko SatoSkating clubAomori FSCBegan skating2000RetiredJune 14, 2018[1] Daisuke MurakamiJapanese nameKanji村上 大介Kanaむらかみ だいすけTranscriptionsRomanizationMurakami Daisuke Daisuke Dice Murakami (村上 大介, Muraka...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يناير 2021) هرم خويمعلومات عامةنوع المبنى هرم ناعم الأوجه موقع أثري أهرام مصر المكان Dara (en) المنطقة الإدارية محافظة أسيوط البلد  مصر بني بطلب من Khui (en) معلومات أخرىالإح...

1964 studio album by Hank MobleyNo Room for SquaresStudio album by Hank MobleyReleasedMay 1964[1]RecordedMarch 7, 1963 (#3, 6)October 2, 1963 (all others)StudioVan Gelder Studio, Englewood Cliffs, NJGenreJazzLength42:12LabelBlue NoteBST 84149ProducerAlfred LionHank Mobley chronology Another Workout(1985) No Room for Squares(1964) The Turnaround!(1965) No Room for Squares is an album by jazz tenor saxophonist Hank Mobley recorded on March 7 & October 2, 1963 and released on...

 

← 2020 2019 2018 2021 in the State of Palestine → 2022 2023 2024 Decades: 2000s 2010s 2020s See also: Timeline of Palestinian state history Events in the year 2021 in the State of Palestine. Incumbents State of Palestine (UN observer non-member State) President (PLO): Mahmoud Abbas Prime Minister: Mohammad Shtayyeh Events Ongoing — COVID-19 pandemic in the State of Palestine 4 February - Israel razed Khirbet Humsa al-Fawqa for the second time because of what it claimed was an i...