Microbial ecology

The great plate count anomaly. Counts of cells obtained via cultivation are orders of magnitude lower than those directly observed under the microscope. This is because microbiologists are able to cultivate only a minority of naturally occurring microbes using current laboratory techniques, depending on the environment.[1]

Microbial ecology (or environmental microbiology) is the ecology of microorganisms: their relationship with one another and with their environment. It concerns the three major domains of life—Eukaryota, Archaea, and Bacteria—as well as viruses.[2] This relationship is often mediated by secondary metabolites produced by microorganisms. These secondary metabolites are known as specialized metabolites and are mostly volatile or non volatile compounds.[3][4] These metabolites include terpenoids, sulfur compounds, indole compound and many more.[3]

The study of microorganisms and their interactions with the environment was pioneered by some scientists such as Sergei Winogradsky, Louis Pasteur, Martinus Beijerinck, Robert Koch, Lorenz Hiltner and many more.[5][6]

Microorganisms are ubiquitous, and play various roles that impact the entire biosphere and any environment they found themselves both positively and negatively. Microbial life plays a primary role in regulating biogeochemical systems in virtually all environments, including some of the most extreme, from frozen environments and acidic lakes, to hydrothermal vents at the bottom of the deepest oceans, and some of the most familiar, such as the human small intestine, nose, and mouth.[7][8][9] Microorganisms (soil microbes) are involved in biogeochemical cycles in the soil which helps in fixing nutrients, such as nitrogen, phosphorus and sulphur in the soil (environment).[10] As a consequence of the quantitative magnitude of microbial life (calculated as 5.0×1030 cells,[11][12]) microbes, by virtue of their biomass alone, constitute a significant carbon sink.[13] Microbial interactions with their environment have industrial application such as wastewater treatment and bioremediation[14][15]

Microorganisms also form several symbiotic relationships with other organisms in their environment where one or both of the partners involved benefit or one partner benefits while the other partner is harmed.[16] Some symbiotic relationships include mutualism and commensalism.[17][18]

Certain substances in the environment can kill microorganisms, thus preventing them from interacting with their environment. These substances are called antimicrobial substances. These can be antibiotic, antifungal, or even antiviral.[19]

History

Louis Pasteur

While microbes have been studied since the seventeenth century, this research was primarily on physiological perspective rather than an ecological one.[20] For instance, Louis Pasteur and his disciples were interested in the problem of microbial distribution both on land and in the ocean.[21] Louis Pasteur was the scientist who invented the pasteurization process. Martinus Beijerinck invented the enrichment culture, a fundamental method of studying microbes from the environment. He is often incorrectly credited with framing the microbial biogeographic idea that "everything is everywhere, but, the environment selects", which was stated by Lourens Baas Becking.[22] Sergei Winogradsky was one of the first researchers to attempt to understand microorganisms outside of the medical context—making him among the first students of microbial ecology and environmental microbiology—discovering chemosynthesis, and developing the Winogradsky column in the process.[23]: 644 

Beijerinck and Windogradsky, however, were focused on the physiology of microorganisms, not the microbial habitat or their ecological interactions.[20] Modern microbial ecology was launched by Robert Hungate and coworkers, who investigated the rumen ecosystem. The study of the rumen required Hungate to develop techniques for culturing anaerobic microbes, and he also pioneered a quantitative approach to the study of microbes and their ecological activities that differentiated the relative contributions of species and catabolic pathways.[20]

Progress in microbial ecology has been tied to the development of new technologies. The measurement of biogeochemical process rates in nature was driven by the availability of radioisotopes beginning in the 1950s. For example, 14CO2 allowed analysis of rates of photosynthesis in the ocean (ref). Another significant breakthrough came in the 1980s, when microelectrodes sensitive to chemical species like O2 were developed.[24] These electrodes have a spatial resolution of 50–100 μm, and have allowed analysis of spatial and temporal biogeochemical dynamics in microbial mats and sediments.[citation needed]

Although measuring biogeochemical process rates could analyse what processes were occurring, they were incomplete because they provided no information on which specific microbes were responsible. It was long known that 'classical' cultivation techniques recovered fewer than 1% of the microbes from a natural habitat. However, beginning in the 1990s, a set of cultivation-independent techniques have evolved to determine the relative abundance of microbes in a habitat. Carl Woese first demonstrated that the sequence of the 16S ribosomal RNA molecule could be used to analyse phylogenetic relationships.[25] Norm Pace took this seminal idea and applied it to analysfe 'who's there' in natural environments. The procedure involves (a) isolation of nucleic acids directly from a natural environment, (b) PCR amplification of small subunit rRNA gene sequences, (c) sequencing the amplicons, and (d) comparison of those sequences to a database of sequences from pure cultures and environmental DNA.[26] This has provided tremendous insights into the diversity present within microbial habitats. However, it does not resolve how to link specific microbes to their biogeochemical role. Metagenomics, the sequencing of total DNA recovered from an environment, can provide insights into biogeochemical potential,[27] whereas metatranscriptomics and metaproteomics can measure actual expression of genetic potential but remains more technically difficult.[28]

Roles

Microorganisms are the backbone of all ecosystems, but even more so in areas where photosynthesis cannot take places due to lack of light. In such zones, chemosynthetic microbes provide energy, and carbon to the other organisms. Chemosynthetic microorganisms gain energy by oxidizing inorganic compounds such as hydrogen, nitrite, ammonia, elemental sulfur and iron(II). These organisms can be found in both aerobic and anaerobic environment.[29] Chemosynthetic microorganisms are primary producer in extreme environment such as high temperature geothermal environments.[30] These chemotrophic organisms can also function in anoxic environments by using other electron acceptors for their respiration.[citation needed]

Other microbes are decomposers, with the ability to recycle nutrients from other organisms' waste products. These microbes play a critical role in biogeochemical cycles.[31] The nitrogen cycle, the phosphorus cycle, the sulphur cycle, and the carbon cycle all depend on microorganisms in one way or another. Each cycle works together to regulate the microorganisms in certain processes.[32] For example, the nitrogen gas which makes up 78% of the Earth's atmosphere is unavailable to most organisms, until it is converted to a biologically available form by the microbial process of nitrogen fixation.[33] Through these biogeochemical cycles, microorganisms are able to make nutrients such as nitrogen, phosphorus and potassium available in the soil.[34] Differing from the nitrogen and carbon cycles, stable gaseous species are not created in the phosphorus cycle in the environment. Microorganisms play a role in solubilizing phosphate, improving soil health, and plant growth.[35]

Again, microbial interaction are involved in bioremediation. Bioremediation is a technology that is employed to remove heavy metal contaminants from soil[36] and wastewater[37] using microorganisms. Microorganisms such as bacteria and fungi removes organic and inorganic pollutants by oxidizing or reducing them.[38][39] Example of microorganisms that play role in bioremediation of heavy metals include Pseudomonas, Bacillus, Arthrobacter, Corynebacterium, Methosinus, Rhodococcus, Stereum hirsutum, Methanogens, Aspergilus niger, Pleurotus ostreatus, Rhizopus arrhizus, Azotobacter, Alcaligenes, Phormidium valderium, and Ganoderma applantus.[40]

Symbiosis

Symbiosis is a close, long term relationship between organisms of different species. Symbiosis can be ectosymbiosis (one organism lives on the surface of other organism) or endosymbiosis (one organism lives inside other organism).[41] Symbiotic relationship can also exist between microorganism that live closely together in a given environment.[16] Symbiotic relationship is found at every level within the ecosystem and has contributed in shaping life.[42] Microorganism produce, change, and utilize nutrient and natural products in numerous ways and this enable them to be ubiquitous.[43] Microbes, especially bacteria, often engage in symbiotic relationships (either positive or negative) with other microorganisms or larger organisms.[44] Plants and animals happen to be the habitat of microorganism that are involved in mutualistic relationship.[45] While such relationships are vital for the development of the microbes, these microbes can provide protection to their host against unfavorable changes in the environment or against predators. They do this by producing bioactive compounds.[44] Although physically small, symbiotic relationships amongst microbes are significant in eukaryotic processes and their evolution.[46][47] The types of symbiotic relationship that microbes participate in include mutualism, commensalism, parasitism,[48] and amensalism[49] which affect the ecosystem in many ways.

Mutualism

Mutualism is a close relationship between two different species in which each has a positive affect on the other . In mutualism, one partner provides service to the other partner and also receives service from the other partner as well.[50] Mutualism in microbial ecology is a relationship between microbial species and other species (example humans) that allows for both sides to benefit.[51] Microorganisms form mutualistic relationship with other microorganism, plants or animals. One example of microbe-microbe interaction would be syntrophy, also known as cross-feeding,[49] of which Methanobacterium omelianskii is a classical example.[52][53] This consortium is formed by an ethanol fermenting organism and a methanogen. The ethanol-fermenting organism provides the archaeal partner with the H2, which this methanogen needs in order to grow and produce methane.[46][53] Syntrophy has been hypothesized to play a significant role in energy and nutrient-limited environments, such as deep subsurface, where it can help the microbial community with diverse functional properties to survive, grow and produce maximum amount of energy.[54][55] Anaerobic oxidation of methane (AOM) is carried out by mutualistic consortium of a sulfate-reducing bacterium and an anaerobic methane-oxidizing archaeon.[56][57] The reaction used by the bacterial partner for the production of H2 is endergonic (and so thermodynamically unfavored) however, when coupled to the reaction used by archaeal partner, the overall reaction becomes exergonic.[46] Thus the two organisms are in a mutualistic relationship which allows them to grow and thrive in an environment, deadly for either species alone. Lichen is an example of a symbiotic organism.[53]

Microorganisms also engage in mutualistic relationship with plants and a typical example of such relationship is arbuscular mycorrhizal (AM) relationship, a symbiotic relationship between plants and fungi.[17] This relationship begins when chemical signals are exchange between the plant and the fungi leading to the metabolic stimulation of the fungus.[58][59] The fungus then attacks the epidermis of the plant’s root and penetrates its highly branched hyphae into the cortical cells of the plant.[17] In this relationship, the fungi gives the plant phosphate and nitrogen obtained from the soil with the plant in return providing the fungi with carbohydrate and lipids obtained from photosynthesis.[60] Also, microorganisms are involve in mutualistic relationship with mammals such as humans. As the host provides shelter and nutrient to the microorganisms, the microorganisms also provide benefits such as helping in the growth of the gastrointestinal tract of the host and protecting host from other detrimental microorganisms.[61]

Commensalism

Commensalism is very common in microbial world, literally meaning "eating from the same table".[62] It is a relationship between two species where one species benefits with no harm or benefit for the other species.[18] Metabolic products of one microbial population are used by another microbial population without either gain or harm for the first population. There are many "pairs "of microbial species that perform either oxidation or reduction reaction to the same chemical equation. For example, methanogens produce methane by reducing CO2 to CH4, while methanotrophs oxidise methane back to CO2.[63]

Amensalism

Amensalism (also commonly known as antagonism) is a type of symbiotic relationship where one species/organism is harmed while the other remains unaffected.[51] One example of such a relationship that takes place in microbial ecology is between the microbial species Lactobacillus casei and Pseudomonas taetrolens.[64] When co-existing in an environment, Pseudomonas taetrolens shows inhibited growth and decreased production of lactobionic acid (its main product) most likely due to the byproducts created by Lactobacillus casei during its production of lactic acid.[65] However, Lactobacillus casei shows no difference in its behaviour.[citation needed]

Microbial resource management

Biotechnology may be used alongside microbial ecology to address a number of environmental and economic challenges. For example, molecular techniques such as community fingerprinting or metagenomics can be used to track changes in microbial communities over time or assess their biodiversity. Managing the carbon cycle to sequester carbon dioxide and prevent excess methanogenesis is important in mitigating global warming, and the prospects of bioenergy are being expanded by the development of microbial fuel cells. Microbial resource management advocates a more progressive attitude towards disease, whereby biological control agents are favoured over attempts at eradication. Fluxes in microbial communities has to be better characterized for this field's potential to be realised.[66] In addition, there are also clinical implications, as marine microbial symbioses are a valuable source of existing and novel antimicrobial agents, and thus offer another line of inquiry in the evolutionary arms race of antibiotic resistance, a pressing concern for researchers.[67]

In built environment and human interaction

Microbes exist in all areas, including homes, offices, commercial centers, and hospitals. In 2016, the journal Microbiome published a collection of various works studying the microbial ecology of the built environment.[68]

A 2006 study of pathogenic bacteria in hospitals found that their ability to survive varied by the type, with some surviving for only a few days while others survived for months.[69]

The lifespan of microbes in the home varies similarly. Generally bacteria and viruses require a wet environment with a humidity of over 10 percent.[70] E. coli can survive for a few hours to a day.[70] Bacteria which form spores can survive longer, with Staphylococcus aureus surviving potentially for weeks or, in the case of Bacillus anthracis, years.[70]

In the home, pets can be carriers of bacteria; for example, reptiles are commonly carriers of salmonella.[71]

S. aureus is particularly common, and asymptomatically colonizes about 30% of the human population;[72] attempts to decolonize carriers have met with limited success[73] and generally involve mupirocin nasally and chlorhexidine washing, potentially along with vancomycin and cotrimoxazole to address intestinal and urinary tract infections.[74]

Antimicrobials

Antimicrobials are substances that are capable of killing microorganism. Antimicrobial can be antibacterial or antibiotic, antifungal or antiviral substance and most of these substance are natural products or may have been obtain from natural products.[19] Natural products are therefore vital in the discovery of pharmaceutical agents.[75][76] Most of the naturally obtained antibiotics are produced by organism under the phylum Actinobacteria. The genus Streptomyces are responsible for most of the antibiotic substances produced by Actinobacteria.[77][78] These natural products with antimicrobial properties belong to the terpenoids, spirotetronate, tetracenedione, lactam, and other groups of compounds. Examples include napyradiomycin, nomimicin, formicamycin, and isoikarugamycin,[79][80][81][82] Some metals, particularly copper, silver, and gold also have antimicrobial properties. Using antimicrobial copper-alloy touch surfaces is a technique that has begun to be used in the 21st century to prevent the transmission of bacteria.[83][84] Silver nanoparticles have also begun to be incorporated into building surfaces and fabrics, although concerns have been raised about the potential side-effects of the tiny particles on human health.[85] Due to the antimicrobial properties certain metals possess, products such as medical devices are made using those metals.[84]

Evolution

Due to the high level of horizontal gene transfer among microbial communities,[86] microbial ecology is also of importance to studies of evolution.[87] Microbial ecology contributes to the evolution in many different parts of the world. For example, different microbial species evolved CRISPR dynamics and functions, allowing a better understanding of human health.[88]

See also

References

  1. ^ Hugenholtz, P. (2002). "Exploring prokaryotic diversity in the genomic era". Genome Biology. 3 (2): reviews0003.reviews0001. doi:10.1186/gb-2002-3-2-reviews0003. PMC 139013. PMID 11864374.
  2. ^ Barton, Larry L.; Northup, Diana E. (September 9, 2011). Microbial Ecology. Wiley-Blackwell. Oxford: John Wiley & Sons. p. 22. ISBN 978-1-118-01582-7. Retrieved May 25, 2013.
  3. ^ a b Schmidt, Ruth; Ulanova, Dana; Wick, Lukas Y; Bode, Helge B; Garbeva, Paolina (July 9, 2019). "Microbe-driven chemical ecology: past, present and future". The ISME Journal. 13 (11): 2656–2663. doi:10.1038/s41396-019-0469-x. ISSN 1751-7362. PMC 6794290. PMID 31289346.
  4. ^ Tyc, Olaf; Song, Chunxu; Dickschat, Jeroen S.; Vos, Michiel; Garbeva, Paolina (April 2017). "The Ecological Role of Volatile and Soluble Secondary Metabolites Produced by Soil Bacteria". Trends in Microbiology. 25 (4): 280–292. doi:10.1016/j.tim.2016.12.002. ISSN 0966-842X. PMID 28038926.
  5. ^ Kolter, Roberto (October 8, 2021). "The History of Microbiology—A Personal Interpretation". Annual Review of Microbiology. 75 (1): 1–17. doi:10.1146/annurev-micro-033020-020648. ISSN 0066-4227. PMID 33974804.
  6. ^ Hartmann, Anton; Rothballer, Michael; Schmid, Michael (November 1, 2008). "Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research". Plant and Soil. 312 (1): 7–14. Bibcode:2008PlSoi.312....7H. doi:10.1007/s11104-007-9514-z. ISSN 1573-5036.
  7. ^ Bowler, Chris; Karl, David M.; Colwell, Rita R. (2009). "Microbial oceanography in a sea of opportunity". Nature. 459 (7244): 180–4. Bibcode:2009Natur.459..180B. doi:10.1038/nature08056. PMID 19444203. S2CID 4426467.
  8. ^ Konopka, Allan (2009). "What is microbial community ecology?". The ISME Journal. 3 (11): 1223–30. Bibcode:2009ISMEJ...3.1223K. doi:10.1038/ismej.2009.88. PMID 19657372.
  9. ^ Hentges, David J. (1993). "The Anaerobic Microflora of the Human Body". Clinical Infectious Diseases. 16: S175 – S180. doi:10.1093/clinids/16.Supplement_4.S175. ISSN 1058-4838. JSTOR 4457097. PMID 8324114.
  10. ^ Basu, Sahana; Kumar, Gautam; Chhabra, Sagar; Prasad, Ram (January 1, 2021), Verma, Jay Prakash; Macdonald, Catriona A.; Gupta, Vijai Kumar; Podile, Appa Rao (eds.), "Chapter 13 - Role of soil microbes in biogeochemical cycle for enhancing soil fertility", New and Future Developments in Microbial Biotechnology and Bioengineering, Elsevier, pp. 149–157, doi:10.1016/b978-0-444-64325-4.00013-4, ISBN 978-0-444-64325-4, retrieved October 30, 2024
  11. ^ Whitman, W. B.; Coleman, DC; Wiebe, WJ (1998). "Prokaryotes: The unseen majority". Proceedings of the National Academy of Sciences. 95 (12): 6578–83. Bibcode:1998PNAS...95.6578W. doi:10.1073/pnas.95.12.6578. JSTOR 44981. PMC 33863. PMID 9618454.
  12. ^ "number of stars in the observable universe - Wolfram|Alpha". Retrieved November 22, 2011.
  13. ^ Reddy, K. Ramesh; DeLaune, Ronald D. (July 15, 2004). Biogeochemistry of Wetlands: Science and Applications. Boca Raton: Taylor & Francis. p. 116. ISBN 978-0-203-49145-4. Retrieved May 25, 2013.
  14. ^ Kushkevych, Ivan (November 2021). "Special Issue: The Application of Microorganisms in Wastewater Treatment". Processes. 9 (11): 1914. doi:10.3390/pr9111914. ISSN 2227-9717.
  15. ^ Wolicka, Dorota; Suszek, Agnieszka; Borkowski, Andrzej; Bielecka, Aleksandra (July 1, 2009). "Application of aerobic microorganisms in bioremediation in situ of soil contaminated by petroleum products". Bioresource Technology. 100 (13): 3221–3227. Bibcode:2009BiTec.100.3221W. doi:10.1016/j.biortech.2009.02.020. ISSN 0960-8524. PMID 19289274.
  16. ^ a b Glaeser, Jens; Overmann, Jörg (August 2004). "Biogeography, Evolution, and Diversity of Epibionts in Phototrophic Consortia". Applied and Environmental Microbiology. 70 (8): 4821–4830. Bibcode:2004ApEnM..70.4821G. doi:10.1128/aem.70.8.4821-4830.2004. ISSN 0099-2240. PMC 492462. PMID 15294820.
  17. ^ a b c Smith, Sally E.; Read, David (2008), "INTRODUCTION", Mycorrhizal Symbiosis, Elsevier, pp. 1–9, doi:10.1016/b978-012370526-6.50002-7, ISBN 978-0-12-370526-6, retrieved October 12, 2024
  18. ^ a b Mathis, Kaitlyn A.; Bronstein, Judith L. (November 2, 2020). "Our Current Understanding of Commensalism". Annual Review of Ecology, Evolution, and Systematics. 51 (1): 167–189. doi:10.1146/annurev-ecolsys-011720-040844. ISSN 1543-592X.
  19. ^ a b Strohl, William R. (April 9, 2014), Bull, Alan T. (ed.), "Antimicrobials", Microbial Diversity and Bioprospecting, Washington, DC, USA: ASM Press, pp. 336–355, doi:10.1128/9781555817770.ch31, ISBN 978-1-68367-217-3, retrieved October 25, 2024
  20. ^ a b c Konopka, A. (2009). "Ecology, Microbial". Encyclopedia of Microbiology. pp. 91–106. doi:10.1016/B978-012373944-5.00002-X. ISBN 978-0-12-373944-5.
  21. ^ Adler, Antony; Dücker, Erik (April 5, 2017). "When Pasteurian Science Went to Sea: The Birth of Marine Microbiology". Journal of the History of Biology. 51 (1): 107–133. doi:10.1007/s10739-017-9477-8. ISSN 0022-5010. PMID 28382585. S2CID 22211340.
  22. ^ De Wit, Rutger; Bouvier, Thierry (2006). "'Everything is everywhere, but, the environment selects'; what did Baas Becking and Beijerinck really say?". Environmental Microbiology. 8 (4): 755–8. Bibcode:2006EnvMi...8..755D. doi:10.1111/j.1462-2920.2006.01017.x. PMID 16584487.
  23. ^ Madigan, Michael T. (2012). Brock biology of microorganisms (13th ed.). San Francisco: Benjamin Cummings. ISBN 978-0-321-64963-8.
  24. ^ Revsbech, Niels Peter; Jørgensen, Bo Barker (1986), "Microelectrodes: Their Use in Microbial Ecology", in Marshall, K. C. (ed.), Advances in Microbial Ecology, vol. 9, Boston, MA: Springer US, pp. 293–352, doi:10.1007/978-1-4757-0611-6_7, ISBN 978-1-4757-0613-0, retrieved September 21, 2020
  25. ^ Woese, Carl R.; Fox, George E. (November 15, 1977). "Phylogenetic structure of the prokaryotic domain: The primary kingdoms". Proceedings of the National Academy of Sciences. 74 (11): 5088–5090. Bibcode:1977PNAS...74.5088W. doi:10.1073/pnas.74.11.5088. ISSN 0027-8424. PMC 432104. PMID 270744.
  26. ^ Hugerth, Luisa W.; Andersson, Anders F. (2017). "Analysing Microbial Community Composition through Amplicon Sequencing: From Sampling to Hypothesis Testing". Frontiers in Microbiology. 8: 1561. doi:10.3389/fmicb.2017.01561. ISSN 1664-302X. PMC 5591341. PMID 28928718.
  27. ^ New, Felicia N.; Brito, Ilana L. (September 8, 2020). "What Is Metagenomics Teaching Us, and What Is Missed?". Annual Review of Microbiology. 74 (1): 117–135. doi:10.1146/annurev-micro-012520-072314. ISSN 0066-4227. PMID 32603623. S2CID 220282070.
  28. ^ Shakya, Migun; Lo, Chien-Chi; Chain, Patrick S. G. (2019). "Advances and Challenges in Metatranscriptomic Analysis". Frontiers in Genetics. 10: 904. doi:10.3389/fgene.2019.00904. ISSN 1664-8021. PMC 6774269. PMID 31608125.
  29. ^ Oren, Aharon (September 15, 2009). "Chemolithotrophy". Encyclopedia of Life Sciences. doi:10.1002/9780470015902.a0021153. ISBN 978-0-470-01617-6.
  30. ^ Inskeep, W. P.; Ackerman, G. G.; Taylor, W. P.; Kozubal, M.; Korf, S.; Macur, R. E. (October 2005). "On the energetics of chemolithotrophy in nonequilibrium systems: case studies of geothermal springs in Yellowstone National Park". Geobiology. 3 (4): 297–317. doi:10.1111/j.1472-4669.2006.00059.x. ISSN 1472-4677.
  31. ^ Fenchel, Tom; Blackburn, Henry; King, Gary M. (July 24, 2012). Bacterial Biogeochemistry: The Ecophysiology of Mineral Cycling (3 ed.). Boston, Mass.: Academic Press/Elsevier. p. 3. ISBN 978-0-12-415974-7. Retrieved May 25, 2013.
  32. ^ Li, Wenjing; Wang, Jinlong; Jiang, Lamei; Lv, Guanghui; Hu, Dong; Wu, Deyan; Yang, Xiaodong (March 1, 2023). "Rhizosphere effect and water constraint jointly determined the roles of microorganism in soil phosphorus cycling in arid desert regions". CATENA. 222: 106809. Bibcode:2023Caten.22206809L. doi:10.1016/j.catena.2022.106809. ISSN 0341-8162. S2CID 256786335.
  33. ^ Delwiche, C. C. (1970). "The Nitrogen Cycle". Scientific American. 223 (3): 136–147. Bibcode:1970SciAm.223c.136D. doi:10.1038/scientificamerican0970-136. ISSN 0036-8733. JSTOR 24925899. PMID 5459723. S2CID 201233849.
  34. ^ Basu, Sahana; Kumar, Gautam; Chhabra, Sagar; Prasad, Ram (January 1, 2021), Verma, Jay Prakash; Macdonald, Catriona A.; Gupta, Vijai Kumar; Podile, Appa Rao (eds.), "Chapter 13 - Role of soil microbes in biogeochemical cycle for enhancing soil fertility", New and Future Developments in Microbial Biotechnology and Bioengineering, Elsevier, pp. 149–157, doi:10.1016/b978-0-444-64325-4.00013-4, ISBN 978-0-444-64325-4, retrieved November 4, 2024
  35. ^ Tian, Jiang; Ge, Fei; Zhang, Dayi; Deng, Songqiang; Liu, Xingwang (February 17, 2021). "Roles of Phosphate Solubilizing Microorganisms from Managing Soil Phosphorus Deficiency to Mediating Biogeochemical P Cycle". Biology. 10 (2): 158. doi:10.3390/biology10020158. ISSN 2079-7737. PMC 7922199. PMID 33671192.
  36. ^ Zhao, Yue; Yao, Jun; Yuan, Zhimin; Wang, Tianqi; Zhang, Yiyue; Wang, Fei (October 8, 2016). "Bioremediation of Cd by strain GZ-22 isolated from mine soil based on biosorption and microbially induced carbonate precipitation". Environmental Science and Pollution Research. 24 (1): 372–380. doi:10.1007/s11356-016-7810-y. ISSN 0944-1344. PMID 27722882.
  37. ^ Saeed, Muhammad Usama; Hussain, Nazim; Sumrin, Aleena; Shahbaz, Areej; Noor, Saman; Bilal, Muhammad; Aleya, Lotfi; Iqbal, Hafiz M. N. (April 20, 2022). "Microbial bioremediation strategies with wastewater treatment potentialities – A review". Science of the Total Environment. 818: 151754. doi:10.1016/j.scitotenv.2021.151754. ISSN 0048-9697. PMID 34800451.
  38. ^ Bilal, Muhammad; Ashraf, Syed Salman; Iqbal, Hafiz M. N. (2020), "Laccase-Mediated Bioremediation of Dye-Based Hazardous Pollutants", Environmental Chemistry for a Sustainable World, Cham: Springer International Publishing, pp. 137–160, doi:10.1007/978-3-030-48985-4_6, ISBN 978-3-030-48984-7, retrieved November 5, 2024
  39. ^ Zhao, Youkang; Bai, Yang; Guo, Qiu; Li, Zhiling; Qi, Mengyuan; Ma, Xiaodan; Wang, Hao; Kong, Deyong; Wang, Aijie; Liang, Bin (February 2019). "Bioremediation of contaminated urban river sediment with methanol stimulation: Metabolic processes accompanied with microbial community changes". Science of the Total Environment. 653: 649–657. doi:10.1016/j.scitotenv.2018.10.396. ISSN 0048-9697.
  40. ^ Verma, Samakshi; Kuila, Arindam (May 1, 2019). "Bioremediation of heavy metals by microbial process". Environmental Technology & Innovation. 14: 100369. doi:10.1016/j.eti.2019.100369. ISSN 2352-1864.
  41. ^ Raina, Jean-Baptiste; Eme, Laura; Pollock, F. Joseph; Spang, Anja; Archibald, John M.; Williams, Tom A. (February 15, 2018). "Symbiosis in the microbial world: from ecology to genome evolution". Biology Open. 7 (2). doi:10.1242/bio.032524. ISSN 2046-6390. PMC 5861367. PMID 29472284.
  42. ^ Doolittle, W. Ford (August 7, 1981). "The Endosymbiont Hypothesis: Symbiosis In Cell Evolution. Life and Its Environment on the Early Earth. Lynn Margulis. Freeman, San Francisco, 1981. xxiv, 420 pp., illus. Cloth, $24.50; paper, $14.95". Science. 213 (4508): 640–641. doi:10.1126/science.213.4508.640. ISSN 0036-8075. PMID 17847470.
  43. ^ Ali, Jared G.; Casteel, C. L.; Mauck, K. E.; Trase, O. (August 1, 2020). "Chemical Ecology of Multitrophic Microbial Interactions: Plants, Insects, Microbes and the Metabolites that Connect Them". Journal of Chemical Ecology. 46 (8): 645–648. Bibcode:2020JCEco..46..645A. doi:10.1007/s10886-020-01209-y. ISSN 1573-1561. PMID 32776182.
  44. ^ a b Chaves, Sandra; Neto, Marta; Tenreiro, Rogério (December 2009). "Insect-symbiont systems: From complex relationships to biotechnological applications". Biotechnology Journal. 4 (12): 1753–1765. doi:10.1002/biot.200800237. ISSN 1860-6768. PMID 19844913.
  45. ^ Drew, Georgia C.; Stevens, Emily J.; King, Kayla C. (October 2021). "Microbial evolution and transitions along the parasite–mutualist continuum". Nature Reviews Microbiology. 19 (10): 623–638. doi:10.1038/s41579-021-00550-7. ISSN 1740-1534. PMC 8054256. PMID 33875863.
  46. ^ a b c Kirchman, David L (2012). Processes in microbial ecology. Oxford: Oxford University Press. ISBN 978-0-19-958693-6. OCLC 777261246.
  47. ^ López-García, Purificación; Eme, Laura; Moreira, David (December 7, 2017). "Symbiosis in eukaryotic evolution". Journal of Theoretical Biology. The origin of mitosing cells: 50th anniversary of a classic paper by Lynn Sagan (Margulis). 434 (Supplement C): 20–33. Bibcode:2017JThBi.434...20L. doi:10.1016/j.jtbi.2017.02.031. PMC 5638015. PMID 28254477.
  48. ^ Krasner, Robert I. (2010). The microbial challenge : science, disease, and public health (2nd ed.). Sudbury, Mass.: Jones and Bartlett Publishers. ISBN 978-0-7637-5689-5. OCLC 317664342.
  49. ^ a b Faust, Karoline; Raes, Jeroen (July 16, 2012). "Microbial interactions: from networks to models". Nature Reviews. Microbiology. 10 (8): 538–550. doi:10.1038/nrmicro2832. PMID 22796884. S2CID 22872711.
  50. ^ Bronstein, Judith L., ed. (July 1, 2015). Mutualism. Oxford University Press. doi:10.1093/acprof:oso/9780199675654.001.0001. ISBN 978-0-19-180942-2.
  51. ^ a b Sheela, Srivastava (2003). Understanding bacteria. Srivastava, P. S. Dordrecht: Kluwer Academic Publishers. ISBN 978-1-4020-1633-2. OCLC 53231924.
  52. ^ Bryant, M. P.; Wolin, E. A.; Wolin, M. J.; Wolfe, R. S. (1967). "Methanobacillus omelianskii, a symbiotic association of two species of bacteria". Archiv für Mikrobiologie. 59 (1–3): 20–31. Bibcode:1967ArMic..59...20B. doi:10.1007/bf00406313. ISSN 0302-8933. PMID 5602458. S2CID 10348127.
  53. ^ a b c López-García, Purificación; Eme, Laura; Moreira, David (December 2017). "Symbiosis in eukaryotic evolution". Journal of Theoretical Biology. The origin of mitosing cells: 50th anniversary of a classic paper by Lynn Sagan (Margulis). 434 (Supplement C): 20–33. Bibcode:2017JThBi.434...20L. doi:10.1016/j.jtbi.2017.02.031. PMC 5638015. PMID 28254477.
  54. ^ Lau, Maggie C. Y.; Kieft, Thomas L.; Kuloyo, Olukayode; Linage-Alvarez, Borja; van Heerden, Esta; Lindsay, Melody R.; Magnabosco, Cara; Wang, Wei; Wiggins, Jessica B.; Guo, Ling; Perlman, David H. (December 6, 2016). "An oligotrophic deep-subsurface community dependent on syntrophy is dominated by sulphur-driven autotrophic denitrifiers". Proceedings of the National Academy of Sciences. 113 (49): E7927 – E7936. Bibcode:2016PNAS..113E7927L. doi:10.1073/pnas.1612244113. ISSN 0027-8424. PMC 5150411. PMID 27872277.
  55. ^ Schink, Bernhard; Stams, Alfons J. M. (2013), "Syntrophism Among Prokaryotes", The Prokaryotes, Springer Berlin Heidelberg, pp. 471–493, doi:10.1007/978-3-642-30123-0_59, ISBN 978-3-642-30122-3
  56. ^ Boetius, Antje; Ravenschlag, Katrin; Schubert, Carsten J.; Rickert, Dirk; Widdel, Friedrich; Gieseke, Armin; Amann, Rudolf; Jørgensen, Bo Barker; Witte, Ursula; Pfannkuche, Olaf (October 2000). "A marine microbial consortium apparently mediating anaerobic oxidation of methane". Nature. 407 (6804): 623–626. Bibcode:2000Natur.407..623B. doi:10.1038/35036572. ISSN 0028-0836. PMID 11034209. S2CID 205009562.
  57. ^ Raghoebarsing, Ashna A.; Pol, Arjan; van de Pas-Schoonen, Katinka T.; Smolders, Alfons J. P.; Ettwig, Katharina F.; Rijpstra, W. Irene C.; Schouten, Stefan; Damsté, Jaap S. Sinninghe; Op den Camp, Huub J. M.; Jetten, Mike S. M.; Strous, Marc (April 2006). "A microbial consortium couples anaerobic methane oxidation to denitrification" (PDF). Nature. 440 (7086): 918–921. Bibcode:2006Natur.440..918R. doi:10.1038/nature04617. hdl:1874/22552. ISSN 0028-0836. PMID 16612380. S2CID 4413069.
  58. ^ Besserer, Arnaud; Puech-Pagès, Virginie; Kiefer, Patrick; Gomez-Roldan, Victoria; Jauneau, Alain; Roy, Sébastien; Portais, Jean-Charles; Roux, Christophe; Bécard, Guillaume; Séjalon-Delmas, Nathalie (June 27, 2006). "Strigolactones Stimulate Arbuscular Mycorrhizal Fungi by Activating Mitochondria". PLOS Biology. 4 (7): e226. doi:10.1371/journal.pbio.0040226. ISSN 1545-7885. PMC 1481526. PMID 16787107.
  59. ^ Harrison, Maria J. (December 2012). "Cellular programs for arbuscular mycorrhizal symbiosis". Current Opinion in Plant Biology. 15 (6): 691–698. Bibcode:2012COPB...15..691H. doi:10.1016/j.pbi.2012.08.010. ISSN 1369-5266. PMID 23036821.
  60. ^ Shiu, Patrick; Xiao, Hua (May 28, 2021). "Faculty Opinions recommendation of Lipid exchanges drove the evolution of mutualism during plant terrestrialization". Science. doi:10.3410/f.740146041.793585932.
  61. ^ Leser, Thomas D.; Mølbak, Lars (September 2009). "Better living through microbial action: the benefits of the mammalian gastrointestinal microbiota on the host". Environmental Microbiology. 11 (9): 2194–2206. Bibcode:2009EnvMi..11.2194L. doi:10.1111/j.1462-2920.2009.01941.x. ISSN 1462-2912. PMID 19737302.
  62. ^ Bogitsh, Burton J.; Carter, Clint E.; Oeltmann, Thomas N. (2013), "Symbiosis and Parasitism", Human Parasitology, Elsevier, pp. 1–13, doi:10.1016/b978-0-12-415915-0.00001-7, ISBN 978-0-12-415915-0, S2CID 88750087
  63. ^ Canfield, Donald E.; Erik Kristensen; Bo Thamdrup (2005), "Structure and Growth of Microbial Populations", Advances in Marine Biology, Elsevier, pp. 23–64, doi:10.1016/s0065-2881(05)48002-5, ISBN 978-0-12-026147-5
  64. ^ García, Cristina; Rendueles, Manuel; Díaz, Mario (September 2017). "Synbiotic Fermentation for the Co-Production of Lactic and Lactobionic Acids from Residual Dairy Whey". Biotechnology Progress. 33 (5): 1250–1256. doi:10.1002/btpr.2507. PMID 28556559. S2CID 23694837.
  65. ^ Krasner, Robert I. (2010). The microbial challenge : science, disease, and public health (2nd ed.). Sudbury, Mass.: Jones and Bartlett Publishers. ISBN 978-0-7637-5689-5. OCLC 317664342.
  66. ^ Verstraete, Willy (2007). "Microbial ecology and environmental biotechnology". The ISME Journal. 1 (1): 4–8. Bibcode:2007ISMEJ...1....4V. doi:10.1038/ismej.2007.7. PMID 18043608.
  67. ^ Ott, J. (2005). Marine Microbial Thiotrophic Ectosymbioses. Oceanography and Marine Biology: An Annual Review. Vol. 42. pp. 95–118. ISBN 978-0-203-50781-0.
  68. ^ "Microbiology of the Built Environment". www.biomedcentral.com. Retrieved September 18, 2016.
  69. ^ Kramer, Axel; Schwebke, Ingeborg; Kampf, Günter (August 16, 2006). "How long do nosocomial pathogens persist on inanimate surfaces? A systematic review". BMC Infectious Diseases. 6 (1): 130. doi:10.1186/1471-2334-6-130. PMC 1564025. PMID 16914034.
  70. ^ a b c "How long do microbes like bacteria and viruses live on surfaces in the home at normal room temperatures?". August 23, 2002. Retrieved September 18, 2016.
  71. ^ "Raw Diets Linked To Salmonella". June 9, 2009. Retrieved September 18, 2016.
  72. ^ Tong SY; Davis JS; Eichenberger E; Holland TL; Fowler VG (July 2015). "Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management". Clinical Microbiology Reviews. 28 (3): 603–661. doi:10.1128/CMR.00134-14. PMC 4451395. PMID 26016486.
  73. ^ "Many factors involved in decolonization of S. aureus". www.healio.com. Retrieved September 18, 2016.
  74. ^ Buehlmann, M.; Frei, R.; Fenner, L.; Dangel, M.; Fluckiger, U.; Widmer, A. F. (June 1, 2008). "Highly effective regimen for decolonization of methicillin-resistant Staphylococcus aureus carriers" (PDF). Infection Control and Hospital Epidemiology. 29 (6): 510–516. doi:10.1086/588201. PMID 18510460. S2CID 34294193.
  75. ^ Newman, David J.; Cragg, Gordon M. (February 7, 2016). "Natural Products as Sources of New Drugs from 1981 to 2014". Journal of Natural Products. 79 (3): 629–661. doi:10.1021/acs.jnatprod.5b01055. ISSN 0163-3864. PMID 26852623.
  76. ^ Jakubiec-Krzesniak, Katarzyna; Rajnisz-Mateusiak, Aleksandra; Guspiel, Adam; Ziemska, Joanna; Solecka, Jolanta (January 1, 2018). "Secondary Metabolites of Actinomycetes and their Antibacterial, Antifungal and Antiviral Properties". Polish Journal of Microbiology. 67 (3): 259–272. doi:10.21307/pjm-2018-048. ISSN 2544-4646. PMC 7256786. PMID 30451442.
  77. ^ Chater, Keith F. (November 30, 2016). "Recent advances in understanding Streptomyces". F1000Research. 5: 2795. doi:10.12688/f1000research.9534.1. ISSN 2046-1402. PMC 5133688. PMID 27990276.
  78. ^ Barka, Essaid Ait; Vatsa, Parul; Sanchez, Lisa; Gaveau-Vaillant, Nathalie; Jacquard, Cedric; Klenk, Hans-Peter; Clément, Christophe; Ouhdouch, Yder; van Wezel, Gilles P. (March 2016). "Taxonomy, Physiology, and Natural Products of Actinobacteria". Microbiology and Molecular Biology Reviews. 80 (1): 1–43. doi:10.1128/mmbr.00019-15. ISSN 1092-2172. PMC 4711186. PMID 26609051.
  79. ^ Wu, Zhengchao; Li, Sumei; Li, Jie; Chen, Yuchan; Saurav, Kumar; Zhang, Qingbo; Zhang, Haibo; Zhang, Wenjun; Zhang, Weimin; Zhang, Si; Zhang, Changsheng (June 14, 2013). "Antibacterial and Cytotoxic New Napyradiomycins from the Marine-Derived Streptomyces sp. SCSIO 10428". Marine Drugs. 11 (6): 2113–2125. doi:10.3390/md11062113. ISSN 1660-3397.
  80. ^ Igarashi, Yasuhiro; Iida, Takako; Oku, Naoya; Watanabe, Hiroyuki; Furihata, Kazuo; Miyanouchi, Koji (April 25, 2012). "Nomimicin, a new spirotetronate-class polyketide from an actinomycete of the genus Actinomadura". The Journal of Antibiotics. 65 (7): 355–359. doi:10.1038/ja.2012.30. ISSN 0021-8820. PMID 22534651.
  81. ^ Qin, Zhiwei; Munnoch, John T.; Devine, Rebecca; Holmes, Neil A.; Seipke, Ryan F.; Wilkinson, Karl A.; Wilkinson, Barrie; Hutchings, Matthew I. (2017). "Formicamycins, antibacterial polyketides produced by Streptomyces formicae isolated from African Tetraponera plant-ants". Chemical Science. 8 (4): 3218–3227. doi:10.1039/c6sc04265a. ISSN 2041-6520. PMC 5414599. PMID 28507698.
  82. ^ Lacret, Rodney; Oves-Costales, Daniel; Gómez, Cristina; Díaz, Caridad; De la Cruz, Mercedes; Pérez-Victoria, Ignacio; Vicente, Francisca; Genilloud, Olga; Reyes, Fernando (December 29, 2014). "New Ikarugamycin Derivatives with Antifungal and Antibacterial Properties from Streptomyces zhaozhouensis". Marine Drugs. 13 (1): 128–140. doi:10.3390/md13010128. ISSN 1660-3397. PMC 4306928. PMID 25551780.
  83. ^ "The bacteria-fighting super element making a return to hospitals: Copper". Washington Post. Retrieved September 18, 2016.
  84. ^ a b Evans, Andris; Kavanagh, Kevin A. (May 7, 2021). "Evaluation of metal-based antimicrobial compounds for the treatment of bacterial pathogens". Journal of Medical Microbiology. 70 (5): 001363. doi:10.1099/jmm.0.001363. ISSN 0022-2615. PMC 8289199. PMID 33961541.
  85. ^ "Silver nanoparticles kill germs, raise health concerns". Archived from the original on February 22, 2014. Retrieved September 18, 2016.
  86. ^ McDaniel, L. D.; Young, E.; Delaney, J.; Ruhnau, F.; Ritchie, K. B.; Paul, J. H. (2010). "High Frequency of Horizontal Gene Transfer in the Oceans". Science. 330 (6000): 50. Bibcode:2010Sci...330...50M. doi:10.1126/science.1192243. PMID 20929803. S2CID 45402114.
  87. ^ Smets, Barth F.; Barkay, Tamar (2005). "Horizontal gene transfer: Perspectives at a crossroads of scientific disciplines". Nature Reviews Microbiology. 3 (9): 675–8. doi:10.1038/nrmicro1253. PMID 16145755. S2CID 2265315.
  88. ^ Westra, Edze R.; van Houte, Stineke; Gandon, Sylvain; Whitaker, Rachel (2019). "The ecology and evolution of microbial CRISPR-Cas adaptive immune systems". Philosophical Transactions: Biological Sciences. 374 (1772): 1–8. doi:10.1098/rstb.2019.0101. ISSN 0962-8436. JSTOR 26643687. PMC 6452260. PMID 30905294. S2CID 85501449.

Read other articles:

جنارو غاتوزو (بالإيطالية: Gennaro Gattuso)‏  معلومات شخصية الاسم الكامل جينارو إيفان غاتوزو الميلاد 9 يناير 1978 (العمر 46 سنة)كوريليانو كالابرو، مقاطعة كوزنسا الطول 1.77 م (5 قدم 9 1⁄2 بوصة) مركز اللعب وسط الإقامة ميلانو  الجنسية إيطاليا  مسيرة الشباب سنوات فريق 1990–...

 

Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Industrial Bank of Japan – berita · surat kabar · buku · cendekiawan · JSTOR (November 2015) Industrial Bank of JapanJenisPerusahaan swastaIndustriJasa keuanganPenerusDigabung ke dalam Mizuho Financial Group ...

 

Conscious subjective experience of humans For other uses, see Emotion (disambiguation). Emotional redirects here. For other uses, see Emotional (disambiguation). Sixteen faces expressing the human passions – colored engraving by J. Pass, 1821, after Charles Le Brun Part of a series onEmotions Affect Classification In animals Emotional intelligence Mood Regulation Interpersonal Dysregulation Valence Emotions Acceptance Admiration Affection Amusement Anger Angst Anguish Annoyance Anticipatio...

Dalam artikel ini, nama keluarganya adalah Han (marga). Kapitan Han Bwee KongHan Bwee Kong, Kapitan Cina Kapitan Cina SurabayaMasa jabatanAwal dekade 1700-an – 1778PendahuluTidak diketahuiPenggantiMayor Han Chan PietDaerah pemilihanSurabaya Informasi pribadiLahir1727 (1727)Lasem, Jawa TengahMeninggal1778Surabaya, Jawa TimurSuami/istriTan CiguanHubunganTan Ho Gian (ayah mertua) Ngabehi Soero Pernollo (saudara) Adipati Soero Adinegoro (keponakan)AnakHan Chan Piet, Mayor Cina Han...

 

German actor Aribert WäscherHorst Caspar as Beaumarchais (left) and Aribert Wäscher as Louis XVI (right). Deutsches Theater, 1946.Born(1895-12-01)1 December 1895Flensburg, GermanyDied14 December 1961(1961-12-14) (aged 66)Berlin, GermanyOther namesRobert Ernst Wilhelm WäscherOccupationFilm actorYears active1920–1955 Aribert Wäscher (1 December 1895 – 14 December 1961) was a German film actor.[1] Selected filmography The Black Tulip Festival (1920) The Graveyard o...

 

Former RAF station in Norfolk, England This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (February 2013) (Learn how and when to remove this message) RAF HethelUSAAF Station 114 Norwich, Norfolk in EnglandAerial Photo of Hethel Airfield - 16 April 1946RAF HethelLocation in NorfolkCoordinates52°33′52″N 001°10′15″E / 52.56444°N 1.170...

Provincia di Mantova Negara  Italia Wilayah / Region Lombardia Ibu kota Mantua Area 2,339 km2 Population (2001) 407,983 Kepadatan 174 inhab./km2 Comuni 70 Nomor kendaraan MN ISTAT 020 Presiden Maurizio Fontanili Executive Democratic Party Peta yang menunjukan lokasi provinsi Mantua di Italia Mantova (bahasa Italia: Provincia di Mantova) adalah sebuah provinsi di regione Lombardia di Italia. Ibu kotanya berada di kota Mantova. Luasnya adalah 2.339 km², dan populasinya sebesar 381.33...

 

ХристианствоБиблия Ветхий Завет Новый Завет Евангелие Десять заповедей Нагорная проповедь Апокрифы Бог, Троица Бог Отец Иисус Христос Святой Дух История христианства Апостолы Хронология христианства Раннее христианство Гностическое христианство Вселенские соборы Н...

 

1986 Rhode Island gubernatorial election ← 1984 November 4, 1986 1988 →   Nominee Edward D. DiPrete Bruce Sundlun Party Republican Democratic Popular vote 208,822 104,504 Percentage 64.70% 32.38% County results Municipality resultsDiPrete:      50–60%      60–70%      70–80%      80–90% Governor before election Edward D. DiPrete Republican Elected Govern...

Indalecio Prieto Fotografiado en 1936. Ministro de Hacienda de España 14 de abril de 1931-16 de diciembre de 1931Jefe de Gobierno Niceto Alcalá-ZamoraManuel AzañaPredecesor Gabino Bugallal AraújoSucesor Jaime Carner Romeu Ministro de Obras Públicas de España 16 de diciembre de 1931-12 de septiembre de 1933Jefe de Gobierno Manuel AzañaPredecesor Diego Martínez BarrioSucesor Rafael Guerra del Río Ministro de Marina y Aire de España 4 de septiembre de 1936-17 de mayo de 1937Jefe de Gob...

 

Voce principale: Giochi olimpici invernali. XVII Giochi olimpici invernali(NO) Se ilden lyse(EN) Fire in your heart(traduzione: Vedi il fuoco luminoso; Il fuoco nel tuo cuore)Città ospitanteLillehammer, Norvegia Paesi partecipanti67 (vedi sotto) Atleti partecipanti1.737 (1.215 - 522 ) Competizioni61 in 6 sport Cerimonia apertura12 febbraio 1994 Cerimonia chiusura27 febbraio 1994 Aperti daHarald V di Norvegia Giuramento atletiVegard Ulvang Giuramento giudiciKari Kåring Ultimo tedoforoHaakon...

 

Janur KuningSutradaraAlam Rengga SurawidjajaPemeranKaharuddin SyahDeddy SutomoSutopo H.SDicky ZulkarnaenPujiono Surya TrionoPupung HarrisTanggal rilis1979Durasi180 menitNegaraIndonesia Janur Kuning adalah sebuah film drama perjuangan Indonesia yang diproduksi pada tahun 1979. Film yang disutradarai oleh Alam Rengga Surawidjaja ini dibintangi antara lain oleh Kaharuddin Syah, Deddy Sutomo dan Sutopo H.S. Sinopsis Film ini menceritakan tentang perjuangan kemerdekaan Indonesia dalam meraih kemba...

El jefe infiltrado Serie de televisiónGénero TelerrealidadVoces de Carlos López Benedi (2014-actualidad)País de origen España EspañaIdioma(s) original(es) Español castellanoN.º de temporadas 8N.º de episodios 63ProducciónDuración 50 minutos (aprox.)Empresa(s) productora(s) BocaBoca (2011)Cuatro Cabezas (2014-2017)Boxfish (2019-actualidad)LanzamientoMedio de difusión Antena 3 (2011) La Sexta (2014-actualidad)Calificación por edades Fecha de lanzamiento 8 de junio de 2011Enlac...

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (نوفمبر 2019) بطولة الأمم الخمس 1951   تفاصيل الموسم بطولة الأمم الست  النسخة 57  التاريخ بداية:13 يناير 1951  نهاية...

 

19th New York Cavalry RegimentNew York flagActiveAugust 11, 1863, to September 10, 1863CountryUnited StatesAllegianceUnionBranchCavalryMilitary unit The 19th New York Cavalry Regiment was a cavalry regiment that served in the Union Army during the American Civil War. Service Originally mustered into service as the 130th New York Volunteer Infantry Regiment it was converted to cavalry on July 28, 1863, and designated as the 19th Regiment New York Volunteer Cavalry. The men were recruited from ...

This article is about the headland in Alaska. For the cape in Nunavut, Canada, see Cape Barrow (Nunavut). For the nearby city formerly known as Barrow, Alaska, see Utqiagvik, Alaska. Northernmost point of the United States in AlaskaPoint Barrow Nuvuk (Inupiaq)Northernmost point of the United StatesPoint BarrowLocation within the state of AlaskaCoordinates: 71°23′20″N 156°28′45″W / 71.38889°N 156.47917°W / 71.38889; -156.47917CountryUnited StatesStateAl...

 

American politician and businessman (born 1962) Steve DainesOfficial portrait, 2019Chair of the National Republican Senatorial CommitteeIncumbentAssumed office January 3, 2023LeaderMitch McConnellPreceded byRick ScottUnited States Senatorfrom MontanaIncumbentAssumed office January 3, 2015Serving with Jon TesterPreceded byJohn WalshMember of the U.S. House of Representativesfrom Montana's at-large districtIn officeJanuary 3, 2013 – January 3, 2015Preceded...

 

Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ou cette section d'article est rédigé entièrement ou presque entièrement à partir d'une seule source (septembre 2013). N'hésitez pas à modifier cet article pour améliorer sa vérifiabilité en apportant de nouvelles références dans des notes de bas de page. Légende Observatoire au sol Radiotélescope Télescope solaire Télescope spatial Observatoire de rayons cosmiques Observatoire de neut...

Pour le roman homonyme, voir Le Guide du voyageur galactique. Pour le film homonyme, voir H2G2 : Le Guide du voyageur galactique. Le Guide du voyageur galactique Univers de fiction Genre(s) Science-fiction humoristique Auteur(s) Douglas Adams Année de création 1978 Pays d’origine Royaume-Uni Langue d’origine anglais britannique Support d’origine feuilleton radiophonique Autre(s) support(s) romans, pièces de théâtre, série télévisée, jeux vidéo, bande dessinée, film modi...

 

Oliver AskewOliver Askew nel 2023Nazionalità Stati Uniti Svezia Automobilismo CategoriaFormula E RuoloPilota Squadra Andretti Autosport CarrieraCarriera nella IndyCar SeriesEsordio6 giugno 2020 StagioniDal 2020 al 2021 Miglior risultato finale19º (2020) GP disputati17 Podi1 Punti ottenuti256 Carriera in Formula EStagioni2022 Scuderie Andretti 2022 GP disputati16 Punti ottenuti24 Statistiche aggiornate al FE - fine stagione 2022 Modifica dati su Wikidata · Manuale Oliver ...