Magnetosphere

A rendering of the magnetic field lines of the magnetosphere of the Earth.

In astronomy and planetary science, a magnetosphere is a region of space surrounding an astronomical object in which charged particles are affected by that object's magnetic field.[1][2] It is created by a celestial body with an active interior dynamo.

In the space environment close to a planetary body with a dipole magnetic field such as Earth, the field lines resemble a simple magnetic dipole. Farther out, field lines can be significantly distorted by the flow of electrically conducting plasma, as emitted from the Sun (i.e., the solar wind) or a nearby star.[3][4] Planets having active magnetospheres, like the Earth, are capable of mitigating or blocking the effects of solar radiation or cosmic radiation. Interactions of particles and atmospheres with magnetospheres are studied under the specialized scientific subjects of plasma physics, space physics, and aeronomy.

History

Study of Earth's magnetosphere began in 1600, when William Gilbert discovered that the magnetic field on the surface of Earth resembled that of a terrella, a small, magnetized sphere. In the 1940s, Walter M. Elsasser proposed the model of dynamo theory, which attributes Earth's magnetic field to the motion of Earth's iron outer core. Through the use of magnetometers, scientists were able to study the variations in Earth's magnetic field as functions of both time and latitude and longitude.

Beginning in the late 1940s, rockets were used to study cosmic rays. In 1958, Explorer 1, the first of the Explorer series of space missions, was launched to study the intensity of cosmic rays above the atmosphere and measure the fluctuations in this activity. This mission observed the existence of the Van Allen radiation belt (located in the inner region of Earth's magnetosphere), with the follow-up Explorer 3 later that year definitively proving its existence. Also during 1958, Eugene Parker proposed the idea of the solar wind, with the term 'magnetosphere' being proposed by Thomas Gold in 1959 to explain how the solar wind interacted with the Earth's magnetic field. The later mission of Explorer 12 in 1961 led by the Cahill and Amazeen observation in 1963 of a sudden decrease in magnetic field strength near the noon-time meridian, later was named the magnetopause. By 1983, the International Cometary Explorer observed the magnetotail, or the distant magnetic field.[4]

Structure and behavior

Magnetospheres are dependent on several variables: the type of astronomical object, the nature of sources of plasma and momentum, the period of the object's spin, the nature of the axis about which the object spins, the axis of the magnetic dipole, and the magnitude and direction of the flow of solar wind.

The planetary distance where the magnetosphere can withstand the solar wind pressure is called the Chapman–Ferraro distance. This is usefully modeled by the formula wherein represents the radius of the planet, represents the magnetic field on the surface of the planet at the equator, and represents the velocity of the solar wind:

A magnetosphere is classified as "intrinsic" when , or when the primary opposition to the flow of solar wind is the magnetic field of the object. Mercury, Earth, Jupiter, Ganymede, Saturn, Uranus, and Neptune, for example, exhibit intrinsic magnetospheres. A magnetosphere is classified as "induced" when , or when the solar wind is not opposed by the object's magnetic field. In this case, the solar wind interacts with the atmosphere or ionosphere of the planet (or surface of the planet, if the planet has no atmosphere). Venus has an induced magnetic field, which means that because Venus appears to have no internal dynamo effect, the only magnetic field present is that formed by the solar wind's wrapping around the physical obstacle of Venus (see also Venus' induced magnetosphere). When , the planet itself and its magnetic field both contribute. It is possible that Mars is of this type.[5]

Structure

An artist's rendering of the structure of a magnetosphere: 1) Bow shock. 2) Magnetosheath. 3) Magnetopause. 4) Magnetosphere. 5) Northern tail lobe. 6) Southern tail lobe. 7) Plasmasphere.

Bow shock

Infrared image and artist's concept of the bow shock around R Hydrae

The bow shock forms the outermost layer of the magnetosphere; the boundary between the magnetosphere and the ambient medium. For stars, this is usually the boundary between the stellar wind and interstellar medium; for planets, the speed of the solar wind there decreases as it approaches the magnetopause.[6] Due to interactions with the bow shock, the stellar wind plasma gains a substantial anisotropy, leading to various plasma instabilities upstream and downstream of the bow shock. [7]

Magnetosheath

The magnetosheath is the region of the magnetosphere between the bow shock and the magnetopause. It is formed mainly from shocked solar wind, though it contains a small amount of plasma from the magnetosphere.[8] It is an area exhibiting high particle energy flux, where the direction and magnitude of the magnetic field varies erratically. This is caused by the collection of solar wind gas that has effectively undergone thermalization. It acts as a cushion that transmits the pressure from the flow of the solar wind and the barrier of the magnetic field from the object.[4]

Magnetopause

The magnetopause is the area of the magnetosphere wherein the pressure from the planetary magnetic field is balanced with the pressure from the solar wind.[3] It is the convergence of the shocked solar wind from the magnetosheath with the magnetic field of the object and plasma from the magnetosphere. Because both sides of this convergence contain magnetized plasma, the interactions between them are complex. The structure of the magnetopause depends upon the Mach number and beta of the plasma, as well as the magnetic field.[9] The magnetopause changes size and shape as the pressure from the solar wind fluctuates.[10]

Magnetotail

Opposite the compressed magnetic field is the magnetotail, where the magnetosphere extends far beyond the astronomical object. It contains two lobes, referred to as the northern and southern tail lobes. Magnetic field lines in the northern tail lobe point towards the object while those in the southern tail lobe point away. The tail lobes are almost empty, with few charged particles opposing the flow of the solar wind. The two lobes are separated by a plasma sheet, an area where the magnetic field is weaker, and the density of charged particles is higher.[11]

Earth's magnetosphere

Artist's rendition of Earth's magnetosphere
Diagram of Earth's magnetosphere

Over Earth's equator, the magnetic field lines become almost horizontal, then return to reconnect at high latitudes. However, at high altitudes, the magnetic field is significantly distorted by the solar wind and its solar magnetic field. On the dayside of Earth, the magnetic field is significantly compressed by the solar wind to a distance of approximately 65,000 kilometers (40,000 mi). Earth's bow shock is about 17 kilometers (11 mi) thick[12] and located about 90,000 kilometers (56,000 mi) from Earth.[13] The magnetopause exists at a distance of several hundred kilometers above Earth's surface. Earth's magnetopause has been compared to a sieve because it allows solar wind particles to enter. Kelvin–Helmholtz instabilities occur when large swirls of plasma travel along the edge of the magnetosphere at a different velocity from the magnetosphere, causing the plasma to slip past. This results in magnetic reconnection, and as the magnetic field lines break and reconnect, solar wind particles are able to enter the magnetosphere.[14] On Earth's nightside, the magnetic field extends in the magnetotail, which lengthwise exceeds 6,300,000 kilometers (3,900,000 mi).[3] Earth's magnetotail is the primary source of the polar aurora.[11] Also, NASA scientists have suggested that Earth's magnetotail might cause "dust storms" on the Moon by creating a potential difference between the day side and the night side.[15]

Other objects

Many astronomical objects generate and maintain magnetospheres. In the Solar System this includes the Sun, Mercury, Earth, Jupiter, Saturn, Uranus, Neptune,[16] and Ganymede. The magnetosphere of Jupiter is the largest planetary magnetosphere in the Solar System, extending up to 7,000,000 kilometers (4,300,000 mi) on the dayside and almost to the orbit of Saturn on the nightside.[17] Jupiter's magnetosphere is stronger than Earth's by an order of magnitude, and its magnetic moment is approximately 18,000 times larger.[18] Venus, Mars, and Pluto, on the other hand, have no magnetic field. This may have had significant effects on their geological history. It is theorized that Venus and Mars may have lost their primordial water to photodissociation and the solar wind. A strong magnetosphere greatly slows this process.[16][19]

Artist impression of the magnetic field around Tau Boötis b detected in 2020.

Magnetospheres generated by exoplanets are thought to be common, though the first discoveries did not come until the 2010s. In 2014, a magnetic field around HD 209458 b was inferred from the way hydrogen was evaporating from the planet.[20][21] In 2019, the strength of the surface magnetic fields of 4 hot Jupiters were estimated and ranged between 20 and 120 gauss compared to Jupiter's surface magnetic field of 4.3 gauss.[22][23] In 2020, a radio emission in the 14-30 MHz band was detected from the Tau Boötis system, likely associated with cyclotron radiation from the poles of Tau Boötis b a signature of a planetary magnetic field.[24][25] In 2021 a magnetic field generated by HAT-P-11b became the first to be confirmed.[26] The first unconfirmed detection of a magnetic field generated by a terrestrial exoplanet was found in 2023 on YZ Ceti b.[27][28][29][30]

See also

References

  1. ^ "Magnetospheres". NASA Science. NASA.
  2. ^ Ratcliffe, John Ashworth (1972). An Introduction to the Ionosphere and Magnetosphere. CUP Archive. ISBN 9780521083416.
  3. ^ a b c "Ionosphere and magnetosphere". Encyclopædia Britannica. Encyclopædia Britannica, Inc. 2012.
  4. ^ a b c Van Allen, James Alfred (2004). Origins of Magnetospheric Physics. Iowa City, Iowa USA: University of Iowa Press. ISBN 9780877459217. OCLC 646887856.
  5. ^ Blanc, M.; Kallenbach, R.; Erkaev, N.V. (2005). "Solar System Magnetospheres". Space Science Reviews. 116 (1–2): 227–298. Bibcode:2005SSRv..116..227B. doi:10.1007/s11214-005-1958-y. S2CID 122318569.
  6. ^ Sparavigna, A.C.; Marazzato, R. (10 May 2010). "Observing stellar bow shocks". arXiv:1005.1527 [physics.space-ph].
  7. ^ Pokhotelov, D.; von Alfthan, S.; Kempf, Y.; Vainio, R.; et al. (17 December 2013). "Ion distributions upstream and downstream of the Earth's bow shock: first results from Vlasiator". Annales Geophysicae. 31 (12): 2207–2212. Bibcode:2013AnGeo..31.2207P. doi:10.5194/angeo-31-2207-2013.
  8. ^ Paschmann, G.; Schwartz, S.J.; Escoubet, C.P.; Haaland, S., eds. (2005). Outer Magnetospheric Boundaries: Cluster Results (PDF). Space Sciences Series of ISSI. Vol. 118. Bibcode:2005ombc.book.....P. doi:10.1007/1-4020-4582-4. ISBN 978-1-4020-3488-6. {{cite book}}: |journal= ignored (help)
  9. ^ Russell, C.T. (1990). "The Magnetopause". In Russell, C.T.; Priest, E.R.; Lee, L.C. (eds.). Physics of magnetic flux ropes. American Geophysical Union. pp. 439–453. ISBN 9780875900261. Archived from the original on 2 February 1999.
  10. ^ Stern, David P.; Peredo, Mauricio (20 November 2003). "The Magnetopause". The Exploration of the Earth's Magnetosphere. NASA. Archived from the original on 19 August 2019. Retrieved 19 August 2019.
  11. ^ a b "The Tail of the Magnetosphere". NASA. Archived from the original on 7 February 2018. Retrieved 22 December 2012.
  12. ^ "Cluster reveals Earth's bow shock is remarkably thin". European Space Agency. 16 November 2011.
  13. ^ "Cluster reveals the reformation of Earth's bow shock". European Space Agency. 11 May 2011.
  14. ^ "Cluster observes a 'porous' magnetopause". European Space Agency. 24 October 2012.
  15. ^ http://www.nasa.gov/topics/moonmars/features/magnetotail_080416.html Archived 14 November 2021 at the Wayback Machine NASA, The Moon and the Magnetotail
  16. ^ a b "Planetary Shields: Magnetospheres". NASA. Retrieved 5 January 2020.
  17. ^ Khurana, K. K.; Kivelson, M. G.; et al. (2004). "The configuration of Jupiter's magnetosphere" (PDF). In Bagenal, Fran; Dowling, Timothy E.; McKinnon, William B. (eds.). Jupiter: The Planet, Satellites and Magnetosphere. Cambridge University Press. ISBN 978-0-521-81808-7.
  18. ^ Russell, C.T. (1993). "Planetary Magnetospheres". Reports on Progress in Physics. 56 (6): 687–732. Bibcode:1993RPPh...56..687R. doi:10.1088/0034-4885/56/6/001. S2CID 250897924.
  19. ^ NASA (14 September 2016). "X-ray Detection Sheds New Light on Pluto". nasa.gov. Retrieved 3 December 2016.
  20. ^ Charles Q. Choi (20 November 2014). "Unlocking the Secrets of an Alien World's Magnetic Field". Space.com. Retrieved 17 January 2022.
  21. ^ Kislyakova, K. G.; Holmstrom, M.; Lammer, H.; Odert, P.; Khodachenko, M. L. (2014). "Magnetic moment and plasma environment of HD 209458b as determined from Ly observations". Science. 346 (6212): 981–984. arXiv:1411.6875. Bibcode:2014Sci...346..981K. doi:10.1126/science.1257829. PMID 25414310. S2CID 206560188.
  22. ^ Passant Rabie (29 July 2019). "Magnetic Fields of 'Hot Jupiter' Exoplanets Are Much Stronger Than We Thought". Space.com. Retrieved 17 January 2022.
  23. ^ Cauley, P. Wilson; Shkolnik, Evgenya L.; Llama, Joe; Lanza, Antonino F. (December 2019). "Magnetic field strengths of hot Jupiters from signals of star-planet interactions". Nature Astronomy. 3 (12): 1128–1134. arXiv:1907.09068. Bibcode:2019NatAs...3.1128C. doi:10.1038/s41550-019-0840-x. ISSN 2397-3366. S2CID 198147426.
  24. ^ Turner, Jake D.; Zarka, Philippe; Grießmeier, Jean-Mathias; Lazio, Joseph; Cecconi, Baptiste; Emilio Enriquez, J.; Girard, Julien N.; Jayawardhana, Ray; Lamy, Laurent; Nichols, Jonathan D.; De Pater, Imke (2021), "The search for radio emission from the exoplanetary systems 55 Cancri, υ Andromedae, and τ Boötis using LOFAR beam-formed observations", Astronomy & Astrophysics, 645: A59, arXiv:2012.07926, Bibcode:2021A&A...645A..59T, doi:10.1051/0004-6361/201937201, S2CID 212883637
  25. ^ O'Callaghan, Jonathan (7 August 2023). "Exoplanets Could Help Us Learn How Planets Make Magnetism". Quanta Magazine. Retrieved 7 August 2023.
  26. ^ HAT-P-11 Spectral Energy Distribution Signatures of Strong Magnetization and Metal-poor Atmosphere for a Neptune-Size Exoplanet, Ben-Jaffel et al. 2021
  27. ^ Pineda, J. Sebastian; Villadsen, Jackie (April 2023). "Coherent radio bursts from known M-dwarf planet host YZ Ceti". Nature Astronomy. 7 (5): 569–578. arXiv:2304.00031. Bibcode:2023NatAs...7..569P. doi:10.1038/s41550-023-01914-0.
  28. ^ Trigilio, Corrado; Biswas, Ayan; et al. (May 2023). "Star-Planet Interaction at radio wavelengths in YZ Ceti: Inferring planetary magnetic field". arXiv:2305.00809 [astro-ph.EP].
  29. ^ "A magnetic field on a nearby Earth-sized exoplanet?". earthsky.org. 10 April 2023. Retrieved 7 August 2023.
  30. ^ O'Callaghan, Jonathan (7 August 2023). "Exoplanets Could Help Us Learn How Planets Make Magnetism". Quanta Magazine.

Read other articles:

Untuk kegunaan lain, lihat Lost Highway. Lost HighwayAlbum studio karya Bon JoviDirilis8 Juni 2007 (2007-06-08)(see Release history)DirekamNashville, Los AngelesGenreHard rock, country rockDurasi49:50LabelIsland / Mercury NashvilleProduserDann Huff John Shanks Desmond Child (Executive Producer)Kronologi Bon Jovi Have A Nice Day (2005)Have A Nice Day2005 Lost Highway (2007) The Circle (2009)The Circle 2009 Templat:Extra album cover 2 Singel dalam album Lost Highway (You Want to) Make ...

 

CSKA Sofia 2006–07 football seasonCSKA Sofia2006–07 seasonChairman Aleksandar TomovManager Plamen Markov(until 12 March 2007) Stoycho MladenovA Group Second placeBulgarian CupQuarter-finalBulgarian SupercupWinnerUEFA CupFirst RoundTop goalscorerLeague: Eugen Trică (16)All: Eugen Trică (20)Highest home attendance17,000 vs Levski Sofia (7 April 2007)Lowest home attendance180 vs Rodopa Smolyan (20 May 2007) Home colours Away colours ← 2005–062007–08 → The 2006–0...

 

العلاقات اليمنية المنغولية اليمن منغوليا   اليمن   منغوليا تعديل مصدري - تعديل   العلاقات اليمنية المنغولية هي العلاقات الثنائية التي تجمع بين اليمن ومنغوليا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة الي�...

Questa voce o sezione sull'argomento Florida non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Contea di PinellasconteaCounty of Pinellas Contea di Pinellas – Veduta LocalizzazioneStato Stati Uniti Stato federato Florida AmministrazioneCapoluogoClearwater Data di istituzione1911 TerritorioCoordinatedel capoluogo27°54′00″N 82°44′24″W&#x...

 

Prosesor Intel Pentium II ialah prosesor penerus Pentium Pro, yang dilengkapi dengan teknologi MMX yang diluncurkan pertama kali pada Mei 1997. Sebelum diberi nama Pentium II, prosesor ini dikenal dengan codename Klamath. Klasifikasi Pentium II Pentium IIMasa produksi1997-1999ProdusenIntelKecepatan prosesor233 MHz -450 MHzKecepatan FSB66 MHz -100 MHzProses produksi0,35 µm -0,25 µmSet instruksiIA-32, MMXMikroarsitekturx86 (P6)Jumlah inti1Jenis soketSlot 1MMC-1MMC-2Mini-Ca...

 

Constituency of Bangladesh's Jatiya Sangsad Jamalpur-2Constituencyfor the Jatiya SangsadDistrictJamalpur DistrictDivisionMymensingh DivisionElectorate221,186 (2018)[1]Current constituencyCreated1978PartyAwami LeagueMember(s)M. Faridul Haq KhanCreated fromMymensingh-2 Jamalpur-2 is a constituency represented in the Jatiya Sangsad (National Parliament) of Bangladesh since 2008 by M. Faridul Haq Khan of the Awami League. Boundaries The constituency encompasses Islampur Upazila.[2]...

Pour les articles homonymes, voir Mouratova. Sofia Mouratova Sofia Mouratova aux Jeux olympiques de 1960.Contexte général Sport exercé gymnastique artistique Biographie Nationalité Soviétique Naissance 13 juillet 1929Léningrad (RSFS de Russie) Décès 25 septembre 2006 (à 77 ans)Moscou (Russie) Taille 160 cm Poids approximatif 55 kg Distinction(s) Entraîneur émérite de l'URSS (d), maître émérite du sport de l'URSS et ordre du Drapeau rouge du Travail Conjoint Valentin Murat...

 

Krishan Kant Wakil Presiden India ke-10Masa jabatan21 Agustus 1997 – 27 Juli 2002PresidenKocheril Raman NarayananPerdana MenteriI. K. GujralAtal Bihari VajpayeePendahuluKocheril Raman NarayananPenggantiBhairon Singh ShekhawatGubernur Tamil NaduMasa jabatan22 Desember 1996 – 25 Januari 1997Ketua MenteriMuthuvel KarunanidhiPendahuluMarri Chenna ReddyPenggantiFatima BeeviGubernur Andhra PradeshMasa jabatan7 Februari 1990 – 21 Agustus 1997Ketua MenteriMarri Chenna...

 

Mosque in Ahmedabad, Gujarat, India Jama MosqueReligionAffiliationIslamStatusActiveLocationLocationAhmedabadMunicipalityAhmedabad Municipal CorporationStateGujaratLocation of Jama mosque in Gujarat, IndiaShow map of AhmedabadJama Mosque, Ahmedabad (Gujarat)Show map of GujaratGeographic coordinates23°01′26″N 72°35′14″E / 23.023822°N 72.587222°E / 23.023822; 72.587222ArchitectureTypeMosqueStyleIndo-Islamic architectureFounderAhmed Shah ICompleted1424Specifica...

Эту страницу предлагается переименовать в «Сталинские репрессии в отношении христиан».Пояснение причин и обсуждение — на странице Википедия:К переименованию/27 февраля 2018. Пожалуйста, основывайте свои аргументы на правилах именования статей. Не удаляйте шаблон до по...

 

Comedy by Aristophanes This article is about Aristophanes' Ecclesiazusae (Ἐκκλησιάζουσαι). For women in parliament or government, see assembly and women in government. AssemblywomenAristophanes[1]Written byAristophanesChorusAthenian WomenSettingAn Athenian street Assemblywomen (Greek: Ἐκκλησιάζουσαι Ekklesiazousai; also translated as, Congresswomen, Women in Parliament, Women in Power, and A Parliament of Women) is a comedy written by the Greek playwright...

 

Fortification This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Breastwork fortification – news · newspapers · books · scholar · JSTOR (February 2024) (Learn how and when to remove this message) Breastwork at Armentieres in 1916, during World War I A breastwork is a temporary fortification, often an earth...

Galaxy in the constellation Centaurus NGC 4709legacy surveys image of NGC 4709 (large galaxy in the middle), as well as other galaxies of the Centaurus Cluster, including NGC 4706.Observation data (J2000 epoch)ConstellationCentaurusRight ascension12h 50m 03.9s[1]Declination−41° 22′ 55″[1]Redshift0.015604[1]Heliocentric radial velocity4678 km/s[1]Distance150 Mly (45 Mpc)[2]Group or clusterCentaurus Cluster (Cen 45 s...

 

Ian WolfeWolfe dalam Dressed to Kill (1946)LahirIan Marcus Wolfe(1896-11-04)4 November 1896Canton, Illinois, Amerika SerikatMeninggal23 Januari 1992(1992-01-23) (umur 95)Los Angeles, California, Amerika SerikatNama lainIen Wulf, Ian Macwolfe, Ian WolfPekerjaanPemeranTahun aktif1934–1990Suami/istriElizabeth Schroder ​ ​(m. 1924)​Anak2 Ian Marcus Wolfe (4 November 1896 – 23 Januari 1992)[1] adalah seorang pemeran karak...

 

Pico de Orizaba (Citlaltépetl), a stratovolcano on the boundary between the states of Puebla and Veracruz, is the highest mountain peak of Mexico. This article comprises three sortable tables of major mountain peaks[1] of Mexico. The summit of a mountain or hill may be measured in three principal ways: The topographic elevation of a summit measures the height on the summit above a geodetic sea level.[2] The first table below ranks the 40 highest major summits of México by e...

  لمعانٍ أخرى، طالع هانس ماير (توضيح). هانس ماير معلومات شخصية الميلاد 3 نوفمبر 1942 (العمر 81 سنة) مركز اللعب مدافع الجنسية ألمانيا ألمانيا الشرقية  مسيرة الشباب سنوات فريق 1952–1956 Motor Dietlas 1956–1961 Motor Suhl 1961–1963 كارل زايس يينا المسيرة الاحترافية1 سنوات فريق م. (هـ.) 1963–1969 كارل...

 

La chanson française désigne un ensemble de genres de compositions musicales en langue française dont les plus anciennes connues datent de la fin du Moyen Âge et de la Renaissance. Sur le plan musical, elle se constitue principalement à partir des airs du folklore, des sonneries de chasse et des airs militaires, comme de la musique religieuse et de la musique classique ou savante. La création de la protection des droits d'auteur puis l'avènement des enregistrements sonores au XIXe ...

 

فتح بصرى جزء من الحروب الإسلامية البيزنطيةحملات خالد بن الوليد مسرح بصرى معلومات عامة التاريخ وسيط property غير متوفر. بداية يونيو 634  نهاية يوليو 634  البلد سوريا  الموقع بصرى،  سوريا حاليا32°31′01″N 36°28′52″E / 32.51694°N 36.48111°E / 32.51694; 36.48111 النتيجة نصر حاسم للمس�...

German publisher For the German musicologist, see Adolf Bernhard Marx. Adolf Marx in 1900;Photograph by Karl Bulla Adolf Fyodorovich Marx (Russian: Адо́льф Фёдорович Маркс; 2 February 1838 – 4 November [O.S. 22 October] 1904), last name also spelled Marcks and recently Marks, known as A. F. Marx,[citation needed] was an influential 19th-century German publisher in Russia best known for the weekly journal Niva. He obtained Russian citizenship. M...

 

В Википедии есть статьи о других людях с фамилией Петровский. Артур Владимирович Петровский Дата рождения 14 мая 1924(1924-05-14) Место рождения Севастополь, СССР Дата смерти 2 декабря 2006(2006-12-02) (82 года) Место смерти Москва, Россия Страна  СССР→ Россия Род деятельнос�...