As the centimetre–gram–second system of units (cgs system) has been superseded by the International System of Units (SI), the use of the gauss has been deprecated by the standards bodies, but is still regularly used in various subfields of science. The SI unit for magnetic flux density is the tesla (symbol T),[1] which corresponds to 10,000gauss.
Name, symbol, and metric prefixes
Albeit not a component of the International System of Units, the usage of the gauss generally follows the rules for SI units. Since the name is derived from a person's name, its symbol is the uppercase letter "G". When the unit is spelled out, it is written in lowercase ("gauss"), unless it begins a sentence.[2]: 147–148 The gauss may be combined with metric prefixes,[3]: 128 such as in milligauss, mG (or mGs), or kilogauss, kG (or kGs).
Unit conversions
The gauss is the unit of magnetic flux density B in the system of Gaussian units and is equal to Mx/cm2 or g/Bi/s2, while the oersted is the unit of H-field. One tesla (T) corresponds to 104 gauss, and one ampere (A) per metre corresponds to 4π × 10−3oersted.
The units for magnetic flux Φ, which is the integral of magnetic B-field over an area, are the weber (Wb) in the SI and the maxwell (Mx) in the CGS-Gaussian system. The conversion factor is 108 maxwell per weber, since flux is the integral of field over an area, area having the units of the square of distance, thus 104 G/T (magnetic field conversion factor) times the square of 102 cm/m (linear distance conversion factor). 108 Mx/Wb = 104 G/T × (102 cm/m)2.
10−9–10−8 G – the magnetic field of the human brain
10−6–10−3 G – the magnetic field of Galactic molecular clouds. Typical magnetic field strengths within the interstellar medium of the Milky Way are ~5 μG.
^Buffett, Bruce A. (2010), "Tidal dissipation and the strength of the Earth's internal magnetic field", Nature, volume 468, pages 952–954, doi:10.1038/nature09643