Linear canonical transformation

In Hamiltonian mechanics, the linear canonical transformation (LCT) is a family of integral transforms that generalizes many classical transforms. It has 4 parameters and 1 constraint, so it is a 3-dimensional family, and can be visualized as the action of the special linear group SL2(R) on the time–frequency plane (domain). As this defines the original function up to a sign, this translates into an action of its double cover on the original function space.

The LCT generalizes the Fourier, fractional Fourier, Laplace, Gauss–Weierstrass, Bargmann and the Fresnel transforms as particular cases. The name "linear canonical transformation" is from canonical transformation, a map that preserves the symplectic structure, as SL2(R) can also be interpreted as the symplectic group Sp2, and thus LCTs are the linear maps of the time–frequency domain which preserve the symplectic form, and their action on the Hilbert space is given by the Metaplectic group.

The basic properties of the transformations mentioned above, such as scaling, shift, coordinate multiplication are considered. Any linear canonical transformation is related to affine transformations in phase space, defined by time-frequency or position-momentum coordinates.

Definition

The LCT can be represented in several ways; most easily,[1] it can be parameterized by a 2×2 matrix with determinant 1, i.e., an element of the special linear group SL2(C). Then for any such matrix with ad − bc = 1, the corresponding integral transform from a function to is defined as

Special cases

Many classical transforms are special cases of the linear canonical transform:

Scaling

Scaling, , corresponds to scaling the time and frequency dimensions inversely (as time goes faster, frequencies are higher and the time dimension shrinks):

Fourier transform

The Fourier transform corresponds to a clockwise rotation by 90° in the time–frequency plane, represented by the matrix

Fractional Fourier transform

The fractional Fourier transform corresponds to rotation by an arbitrary angle; they are the elliptic elements of SL2(R), represented by the matrices The Fourier transform is the fractional Fourier transform when The inverse Fourier transform corresponds to

Fresnel transform

The Fresnel transform corresponds to shearing, and are a family of parabolic elements, represented by the matrices where z is distance, and λ is wavelength.

Laplace transform

The Laplace transform corresponds to rotation by 90° into the complex domain and can be represented by the matrix

Fractional Laplace transform

The fractional Laplace transform corresponds to rotation by an arbitrary angle into the complex domain and can be represented by the matrix[2] The Laplace transform is the fractional Laplace transform when The inverse Laplace transform corresponds to

Chirp multiplication

Chirp multiplication, , corresponds to :[citation needed]

Composition

Composition of LCTs corresponds to multiplication of the corresponding matrices; this is also known as the additivity property of the Wigner distribution function (WDF). Occasionally the product of transforms can pick up a sign factor due to picking a different branch of the square root in the definition of the LCT. In the literature, this is called the metaplectic phase.

If the LCT is denoted by , i.e.

then

where

If is the , where is the LCT of , then

LCT is equal to the twisting operation for the WDF and the Cohen's class distribution also has the twisting operation.

We can freely use the LCT to transform the parallelogram whose center is at (0, 0) to another parallelogram which has the same area and the same center:

From this picture we know that the point (−1, 2) transform to the point (0, 1), and the point (1, 2) transform to the point (4, 3). As the result, we can write down the equations

Solve these equations gives (abcd) = (2, 1, 1, 1).

In optics and quantum mechanics

Paraxial optical systems implemented entirely with thin lenses and propagation through free space and/or graded-index (GRIN) media, are quadratic-phase systems (QPS); these were known before Moshinsky and Quesne (1974) called attention to their significance in connection with canonical transformations in quantum mechanics. The effect of any arbitrary QPS on an input wavefield can be described using the linear canonical transform, a particular case of which was developed by Segal (1963) and Bargmann (1961) in order to formalize Fock's (1928) boson calculus.[3]

In quantum mechanics, linear canonical transformations can be identified with the linear transformations which mix the momentum operator with the position operator and leave invariant the canonical commutation relations.

Applications

Canonical transforms are used to analyze differential equations. These include diffusion, the Schrödinger free particle, the linear potential (free-fall), and the attractive and repulsive oscillator equations. It also includes a few others such as the Fokker–Planck equation. Although this class is far from universal, the ease with which solutions and properties are found makes canonical transforms an attractive tool for problems such as these.[4]

Wave propagation through air, a lens, and between satellite dishes are discussed here. All of the computations can be reduced to 2×2 matrix algebra. This is the spirit of LCT.

Electromagnetic wave propagation

Assuming the system looks like as depicted in the figure, the wave travels from the (xiyi) plane to the (xy) plane. The Fresnel transform is used to describe electromagnetic wave propagation in free space:

where

is the wave number,
λ is the wavelength,
z is the distance of propagation,
is the imaginary unit.

This is equivalent to LCT (shearing), when

When the travel distance (z) is larger, the shearing effect is larger.

Spherical lens

With the lens as depicted in the figure, and the refractive index denoted as n, the result is[5]

where f is the focal length, and Δ is the thickness of the lens.

The distortion passing through the lens is similar to LCT, when

This is also a shearing effect: when the focal length is smaller, the shearing effect is larger.

Spherical mirror

The spherical mirror—e.g., a satellite dish—can be described as a LCT, with

This is very similar to lens, except focal length is replaced by the radius R of the dish. A spherical mirror with radius curvature of R is equivalent to a thin lens with the focal length f = −R/2 (by convention, R < 0 for concave mirror, R > 0 for convex mirror). Therefore, if the radius is smaller, the shearing effect is larger.

Joint free space and spherical lens

The relation between the input and output we can use LCT to represent

  1. If , it is reverse real image.
  2. If , it is Fourier transform+scaling
  3. If , it is fractional Fourier transform+scaling

Basic properties

In this part, we show the basic properties of LCT

Operator Matrix of transform

Given a two-dimensional column vector we show some basic properties (result) for the specific input below:

Input Output Remark
where
linearity
Parseval's theorem
where complex conjugate
multiplication
derivation
modulation
shift
where scaling
scaling
1
where

Example

The system considered is depicted in the figure to the right: two dishes – one being the emitter and the other one the receiver – and a signal travelling between them over a distance D. First, for dish A (emitter), the LCT matrix looks like this:

Then, for dish B (receiver), the LCT matrix similarly becomes:

Last, for the propagation of the signal in air, the LCT matrix is:

Putting all three components together, the LCT of the system is:

Relation to particle physics

It has been shown that it is possible to establish relations between some properties of quarks and leptons (including sterile neutrinos) and spin representation of multidimensional linear canonical transformations.[6][7] In this approach, the electric charge, weak hypercharge and weak isospin of the particles are expressed as linear combinations of some operators defined from the generators of the Clifford algebra associated with the spin representation of linear canonical transformations. The existence of Color charge is also explained in this framework.

Classification of quarks and leptons based on a spin representation of Linear Canonical Transformations
Linear Canonical Transformations and fermions classification

The basic quantum state of a quark or a lepton (including momentum and position states) is in this context described by using the concepts of quantum phase space and phase space representation of quantum mechanics.[8]

See also

Notes

  1. ^ de Bruijn, N. G. (1973). "A theory of generalized functions, with applications to Wigner distribution and Weyl correspondence", Nieuw Arch. Wiskd., III. Ser., 21, 205–280.
  2. ^ P. R. Deshmukh & A. S. Gudadhe (2011) Convolution structure for two version of fractional Laplace transform. Journal of Science and Arts, 2(15):143–150. "CORE". Archived from the original on 2012-12-23. Retrieved 2012-08-29.
  3. ^ K. B. Wolf (1979) Ch. 9: Canonical transforms.
  4. ^ K. B. Wolf (1979) Ch. 9 & 10.
  5. ^ Goodman, Joseph W. (2005), Introduction to Fourier optics (3rd ed.), Roberts and Company Publishers, ISBN 0-9747077-2-4, §5.1.3, pp. 100–102.
  6. ^ R. T. Ranaivoson et al (2021) Phys. Scr. 96, 065204, arXiv:1804.10053 [quant-ph]
  7. ^ Raoelina Andriambololona et al (2021) J. Phys. Commun. 5 091001, arXiv:2109.03807 [hep-ph]
  8. ^ R.T. Ranaivoson et al (2022) J. Phys. Commun. 6 095010, arXiv:2008.10602 [quant-ph]

References

  • J.J. Healy, M.A. Kutay, H.M. Ozaktas and J.T. Sheridan, "Linear Canonical Transforms: Theory and Applications", Springer, New York 2016.
  • J.J. Ding, "Time–frequency analysis and wavelet transform course note", the Department of Electrical Engineering, National Taiwan University (NTU), Taipei, Taiwan, 2007.
  • K.B. Wolf, "Integral Transforms in Science and Engineering", Ch. 9&10, New York, Plenum Press, 1979.
  • S.A. Collins, "Lens-system diffraction integral written in terms of matrix optics," J. Opt. Soc. Amer. 60, 1168–1177 (1970).
  • M. Moshinsky and C. Quesne, "Linear canonical transformations and their unitary representations," J. Math. Phys. 12, 8, 1772–1783, (1971).
  • B.M. Hennelly and J.T. Sheridan, "Fast Numerical Algorithm for the Linear Canonical Transform", J. Opt. Soc. Am. A 22, 5, 928–937 (2005).
  • H.M. Ozaktas, A. Koç, I. Sari, and M.A. Kutay, "Efficient computation of quadratic-phase integrals in optics", Opt. Let. 31, 35–37, (2006).
  • Bing-Zhao Li, Ran Tao, Yue Wang, "New sampling formulae related to the linear canonical transform", Signal Processing '87', 983–990, (2007).
  • A. Koç, H.M. Ozaktas, C. Candan, and M.A. Kutay, "Digital computation of linear canonical transforms", IEEE Trans. Signal Process., vol. 56, no. 6, 2383–2394, (2008).
  • Ran Tao, Bing-Zhao Li, Yue Wang, "On sampling of bandlimited signals associated with the linear canonical transform", IEEE Transactions on Signal Processing, vol. 56, no. 11, 5454–5464, (2008).
  • D. Stoler, "Operator methods in Physical Optics", 26th Annual Technical Symposium. International Society for Optics and Photonics, 1982.
  • Tian-Zhou Xu, Bing-Zhao Li, " Linear Canonical Transform and Its Applications ", Beijing, Science Press, 2013.
  • Raoelina Andriambololona, R. T. Ranaivoson, H.D.E Randriamisy, R. Hanitriarivo, "Dispersion Operators Algebra and Linear Canonical Transformations",Int. J. Theor. Phys., 56, 4, 1258–1273, (2017)
  • R.T. Ranaivoson et al., "Linear Canonical Transformations in Relativistic Quantum Physics", Phys. Scr. 96, 065204, (2021).
  • Tatiana Alieva., Martin J. Bastiaans. (2016) The Linear Canonical Transformations: Definition and Properties. In: Healy J., Alper Kutay M., Ozaktas H., Sheridan J. (eds) Linear Canonical Transforms. Springer Series in Optical Sciences, vol 198. Springer, New York, NY
  • Raoelina Andriambololona et al., "Sterile neutrinos existence suggested from LCT covariance", J. Phys. Commun. 5, 091001, (2021).
  • R.T. Ranaivoson et al., "Invariant Quadratic Operators associated to Linear Canonical Transformations ", J. Phys. Commun. 6, 095010, (2022).

Read other articles:

GuruPosterSutradaraRajiv AnchalDitulis olehCG Rajendra BabuRajiv Anchal (Story)PemeranMohanlalSuresh GopiSitharaKaveriMuraliPenata musikIlaiyaraajaSinematograferS. KumarPerusahaanproduksiJanasammathi Creations Pvt Ltd.Tanggal rilis 12 September 1997 (1997-09-12) NegaraIndiaBahasaMalayalam Guru (artinya pengajar dan pemandu spiritual) adalah sebuah film fantasi berbahasa Malayalam India 1997 yang ditulis oleh CG Rajendra Babu dan disutradarai oleh Rajiv Anchal. Aktor Malayalam terke...

 

Adnan Terzić Adnan Terzić (lahir 5 April 1960) adalah Ketua Dewan Menteri Bosnia-Herzegovina atau Perdana Menteri Bosnia-Herzegovina dan anggota Partai Aksi Demokratik. Ia dicalonkan untuk posisi itu pada Desember 2002 setelah pemilihan umum. Ia juga seorang anggota komunitas Bosniak. Pada 1986, Terzić meraih pendidikan di Departemen Land Survey Engineering di Universitas Sarajevo dan tampil dalam berbagai peranan di Bosnia tengah di Travnik. Dalam Periode 1996-2001, Terzić adalah Gubernu...

 

Coppa Italia Dilettanti 1982-1983 Competizione Coppa Italia Dilettanti Sport Calcio Edizione 17ª Organizzatore Lega Nazionale Dilettanti Date dal 5 settembre 1982al 28 maggio 1983 Luogo  Italia Formula Eliminazione diretta Risultati Vincitore Lodigiani(1º titolo) Secondo Cuoiopelli Semi-finalisti Massese e Pro Cisterna Cronologia della competizione 1981-1982 1983-1984 Manuale La Coppa Italia Dilettanti 1982-1983 è stata la 17ª edizione di questa competizione calcistica itali...

Untuk pernyataan yang menjelaskan asal muasal geografi dan migrasi awal manusia ke benua Amerika, lihat Pemukiman benua Amerika. Informasi lebih lanjut mengenai warisan genetik Amerik Asli: Sejarah genetik penduduk asli Amerika Peta dunia (proyeksi Mercator), yang menempatkan benua Amerika pada bagian tengah. Klaim-klaim kontak lintas samudra pra-Columbus berkaitan dengan kunjungan, penemuan atau interaksi dengan benua Amerika dan/atau penduduk asli Amerika oleh orang-orang dari Afrika, A...

 

The Wrong MissyPoster resmiSutradaraTyler SpindelProduser Kevin Grady Allen Covert Judit Maull Ditulis oleh Chris Pappas Kevin Barnett Pemeran David Spade Lauren Lapkus Penata musikMateo MessinaSinematograferTheo van de SandePenyunting Brian Robinson J.J. Titone PerusahaanproduksiHappy Madison ProductionsDistributorNetflixTanggal rilis 13 Mei 2020 (2020-05-13) Durasi90 menitNegaraAmerika SerikatBahasaInggris The Wrong Missy adalah sebuah film komedi romantis Amerika Serikat tahun 2...

 

Evening pumps with spool heel (1918), A.E. Little & Co. A spool heel is a shoe heel that is wide at the top and bottom and narrower in the middle,[1] so resembling a cotton spool or an hourglass.[2] Spool heels were fashionable in Europe during the Baroque[3] and Rococo[4] periods. Its other periods of popularity include the 1860s[5] and the 1950s.[6] This look has been popularized by John Fluevog. A low spool heel has a small distinctive fl...

Este artículo trata sobre la moneda metálica. Para la moneda como unidad de cuenta, véase moneda (divisa). Conjunto de monedas de Estados Unidos esparcidas sobre una superficie plana, incluyendo piezas de veinticinco centavos, diez centavos, cinco centavos, y un centavo. Moneda suiza de diez centavos de 1879, similar a las monedas más modernas que aún se usan oficialmente en la actualidad. La moneda es una pieza de un material resistente, de peso y composición uniforme, normalmente de m...

 

Croatian tennis player This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Ivan Dodig – news · newspapers · books · scholar · JSTOR (September 2010) (Learn how and when to remove this message) Ivan ...

 

Державний комітет телебачення і радіомовлення України (Держкомтелерадіо) Приміщення комітетуЗагальна інформаціяКраїна  УкраїнаДата створення 2003Керівне відомство Кабінет Міністрів УкраїниРічний бюджет 1 964 898 500 ₴[1]Голова Олег НаливайкоПідвідомчі ор...

For other people named Stuart Taylor, see Stuart Taylor (disambiguation). English footballer Stuart Taylor Taylor warming up for Aston Villa in 2008Personal informationFull name Stuart James Taylor[1]Date of birth (1980-11-28) 28 November 1980 (age 43)[2]Place of birth Romford, EnglandHeight 6 ft 6 in (1.98 m)[3]Position(s) GoalkeeperYouth career Wimbledon ArsenalSenior career*Years Team Apps (Gls)1997–2005 Arsenal 18 (0)1999 → Bristol Rovers (l...

 

Species of flowering plant Iris brevicaulis Conservation status Apparently Secure  (NatureServe)[1] Scientific classification Kingdom: Plantae Clade: Tracheophytes Clade: Angiosperms Clade: Monocots Order: Asparagales Family: Iridaceae Genus: Iris Subgenus: Iris subg. Limniris Section: Iris sect. Limniris Series: Iris ser. Hexagonae Species: I. brevicaulis Binomial name Iris brevicaulisRaf. Synonyms[2] Iris acleantha Small Iris alabamensis Small Iris atrocyanea Small...

 

1970 single by Deep Purple For other uses, see Black Night (disambiguation). For the other song, see Black Night (Charles Brown song). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Black Night – news · newspapers · books · scholar · JSTOR (January 2015) (Learn how and when to remove this message) Black Nig...

Beirut Rafic Hariri International Airportمطار رفيق الحريري الدولي IATA: BEY - ICAO: OLBA Tóm tắt Kiểu sân bayMilitary/PublicCơ quan điều hànhMiddle East Airports Services (MEAS) S.A.L.Phục vụBeirut, Liban Độ cao AMSL 87 ft (27 m) Tọa độ 33°49′16″B 35°29′18″Đ / 33,82111°B 35,48833°Đ / 33.82111; 35.48833 Đường băng Hướng Chiều dài Bề mặt ft m 03/21 12.467 3.800 bê tông 16/34 11.138 3.395 bê tôn...

 

Gardolo di MezzofrazioneGardolo di Mezzo – Veduta LocalizzazioneStato Italia Regione Trentino-Alto Adige Provincia Trento Comune Trento TerritorioCoordinate46°06′55.3″N 11°06′58.43″E46°06′55.3″N, 11°06′58.43″E (Gardolo di Mezzo) Altitudine363 m s.l.m. Abitanti141[1] (2001) Altre informazioniCod. postale38121 Prefisso0461 Fuso orarioUTC+1 Nome abitantigardoloti Patronosan Vigilio di Trento CartografiaGardolo di Mezzo Modifica dati...

 

Sertab ErenerInformasi latar belakangNama lahirSertab ErenerLahir4 Desember 1964 (umur 59)Istanbul, TurkeyGenreMusik popPekerjaanSinger-songwriterInstrumenVocalsTahun aktif1992 – sekarangLabelSimya MüzikSitus webhttp://www.sertab.com/ Sertab Erener (lahir 4 Desember 1964) adalah seorang penyanyi berkebangsaan Turki. Diskografi Album Sakin Ol! (1992) Lâ'l (1994) Sertab Gibi (1997) Sertab Erener (1999) Turuncu (2001) No Boundaries (2004) Aşk Ölmez (2005) Painted on Water (2008) Singl...

Munisipalitas Bistrica ob Sotli Občina Bistrica ob SotliMunisipalitasLokasi di SloveniaNegaraSloveniaIbu kotaBistrica ob SotliLuas • Total31,1 km2 (120 sq mi)Populasi (2013) • Total1.404 • Kepadatan4,5/km2 (12/sq mi)Kode ISO 3166-2SI-149Situs webhttp://www.bistricaobsotli.si Munisipalitas Bistrica ob Sotli adalah salah satu dari 212 munisipalitas di Slovenia. Kode ISO 3166-2 munisipalitas yang beribu kota di Bistrica ob Sotli ini a...

 

إليزابيث من النمسا، ملكة بولندا (بالألمانية: Elisabeth von Habsburg)‏، و(بالبولندية: Elżbieta Rakuszanka)‏    معلومات شخصية الميلاد سنة 1436   فيينا  الوفاة 30 أغسطس 1505 (68–69 سنة)  كراكوف  مكان الدفن كاتدرائية فافل  مواطنة أرشيدوقية النمسا  الزوج كازيمير الرابع (10 فبراير 1454�...

 

Australian Broadcasting Corporation radio service For the American sitcom, see NewsRadio. For the American radio service, see ABC News Radio. 5PB redirects here. For the video game company, see 5pb. ABC NewsRadioBroadcast areaAustralia (some areas AM/FM) & InternetFrequencyVarious (FM and AM; see Frequencies)DAB+DVB-T Channel 204onlineFoxtel – TV Channel 875 / Radio Channel 43ProgrammingFormatAll-news radioOwnershipOwnerAustralian Broadcasting CorporationHistoryFirst air date15 August 1...

Irish League 1891-1892 Competizione Irish League Sport Calcio Edizione 2ª Luogo Irlanda Formula Girone all'italiana Cronologia della competizione 1890-91 1892-93 Manuale Il campionato era formato da dieci squadre e il Linfield F.C. vinse il titolo. Classifica finale Pos. Squadra G V N P GF GS Punti 1 Linfield 16 15 0 1 106 14 30 2 Ulster 16 12 0 4 61 34 24 3 Lancashire Fusiliers 15 11 1 3 56 29 23 4 Glentoran 15 9 2 4 80 40 20 5 Distillery 10 7 0 3 40 17 12(-2) 6 Cliftonville 13 4 2 7 28 36...

 

قناة إيه سي ميلان   معلومات عامة المالك إيه سي ميلان  تاريخ التأسيس 1999  البلد إيطاليا  المقر الرسمي ميلانو  الموقع الرسمي الموقع الرسمي  تعديل مصدري - تعديل   قناة إيه سي ميلان معلومات عن القناة الافتتاح: 16 ديسمبر 1999 المالك: ريكاردو سيلفا الدولة:  إيطاليا ...