Justesen code

Binary Justesen Codes
Named afterJørn Justesen
Classification
TypeLinear block code
Block length
Message length
Rate=
Distance where for small .
Alphabet size2
Notation-code
Properties
constant rate, constant relative distance, constant alphabet size

In coding theory, Justesen codes form a class of error-correcting codes that have a constant rate, constant relative distance, and a constant alphabet size.

Before the Justesen error correction code was discovered, no error correction code was known that had all of these three parameters as a constant.

Subsequently, other ECC codes with this property have been discovered, for example expander codes. These codes have important applications in computer science such as in the construction of small-bias sample spaces.

Justesen codes are derived as the code concatenation of a Reed–Solomon code and the Wozencraft ensemble.

The Reed–Solomon codes used achieve constant rate and constant relative distance at the expense of an alphabet size that is linear in the message length.

The Wozencraft ensemble is a family of codes that achieve constant rate and constant alphabet size, but the relative distance is only constant for most of the codes in the family.

The concatenation of the two codes first encodes the message using the Reed–Solomon code, and then encodes each symbol of the codeword further using a code from the Wozencraft ensemble – using a different code of the ensemble at each position of the codeword.

This is different from usual code concatenation where the inner codes are the same for each position. The Justesen code can be constructed very efficiently using only logarithmic space.

Definition

The Justesen code is the concatenation of an outer code and different inner codes , for.

More precisely, the concatenation of these codes, denoted by , is defined as follows. Given a message , we compute the codeword produced by an outer code : .

Then we apply each code of N linear inner codes to each coordinate of that codeword to produce the final codeword; that is, .

Look back to the definition of the outer code and linear inner codes, this definition of the Justesen code makes sense because the codeword of the outer code is a vector with elements, and we have linear inner codes to apply for those elements.

Here for the Justesen code, the outer code is chosen to be Reed Solomon code over a field evaluated over of rate , < < .

The outer code have the relative distance and block length of . The set of inner codes is the Wozencraft ensemble .

Property of Justesen code

As the linear codes in the Wonzencraft ensemble have the rate , Justesen code is the concatenated code with the rate . We have the following theorem that estimates the distance of the concatenated code .

Theorem

Let Then has relative distance of at least

Proof

In order to prove a lower bound for the distance of a code we prove that the Hamming distance of an arbitrary but distinct pair of codewords has a lower bound. So let be the Hamming distance of two codewords and . For any given

we want a lower bound for

Notice that if , then . So for the lower bound , we need to take into account the distance of

Suppose

Recall that is a Wozencraft ensemble. Due to "Wonzencraft ensemble theorem", there are at least linear codes that have distance So if for some and the code has distance then

Further, if we have numbers such that and the code has distance then

So now the final task is to find a lower bound for . Define:

Then is the number of linear codes having the distance

Now we want to estimate Obviously .

Due to the Wozencraft Ensemble Theorem, there are at most linear codes having distance less than so

Finally, we have

This is true for any arbitrary . So has the relative distance at least which completes the proof.

Comments

We want to consider the "strongly explicit code". So the question is what the "strongly explicit code" is. Loosely speaking, for linear code, the "explicit" property is related to the complexity of constructing its generator matrix G.

That in effect means that we can compute the matrix in logarithmic space without using the brute force algorithm to verify that a code has a given satisfied distance.

For the other codes that are not linear, we can consider the complexity of the encoding algorithm.

So by far, we can see that the Wonzencraft ensemble and Reed-Solomon codes are strongly explicit. Therefore, we have the following result:

Corollary: The concatenated code is an asymptotically good code(that is, rate > 0 and relative distance > 0 for small q) and has a strongly explicit construction.

An example of a Justesen code

The following slightly different code is referred to as the Justesen code in MacWilliams/MacWilliams. It is the particular case of the above-considered Justesen code for a very particular Wonzencraft ensemble:

Let R be a Reed-Solomon code of length N = 2m − 1, rank K and minimum weight N − K + 1.

The symbols of R are elements of F = GF(2m) and the codewords are obtained by taking every polynomial ƒ over F of degree less than K and listing the values of ƒ on the non-zero elements of F in some predetermined order.

Let α be a primitive element of F. For a codeword a = (a1, ..., aN) from R, let b be the vector of length 2N over F given by

and let c be the vector of length 2N m obtained from b by expressing each element of F as a binary vector of length m. The Justesen code is the linear code containing all such c.

The parameters of this code are length 2m N, dimension m K and minimum distance at least

where is the greatest integer satisfying . (See MacWilliams/MacWilliams for a proof.)

See also

References

  • Lecture 28: Justesen Code. Coding theory's course. Prof. Atri Rudra.
  • Lecture 6: Concatenated codes. Forney codes. Justesen codes. Essential Coding Theory.
  • J. Justesen (1972). "A class of constructive asymptotically good algebraic codes". IEEE Trans. Inf. Theory. 18 (5): 652–656. doi:10.1109/TIT.1972.1054893.
  • F.J. MacWilliams; N.J.A. Sloane (1977). The Theory of Error-Correcting Codes. North-Holland. pp. 306–316. ISBN 0-444-85193-3.

Read other articles:

Ne doit pas être confondu avec page web. « Site internet » redirige ici. Pour les autres significations, voir Internet et Internet Exchange Point. Un site web, site Web[1],[2] ou simplement site[3], est un ensemble de pages web et de ressources reliées par des hyperliens, défini et accessible par une adresse web. Un site est développé à l'aide de langages de programmation web, puis hébergé sur un serveur web accessible via le réseau mondial Internet, un intranet local, o...

 

American politician (1869–1931) This article is about the U.S. congressman from Ohio. For other people, see Nicholas Longworth (disambiguation). Nicholas LongworthLongworth in 190338th Speaker of the United States House of RepresentativesIn officeDecember 7, 1925 – March 3, 1931Preceded byFrederick H. GillettSucceeded byJohn Nance GarnerLeader of the House Republican ConferenceIn officeDecember 7, 1925 – March 3, 1931Preceded byFrederick H. GillettSucceeded byBertr...

 

Domesticated dogs are among the animals that most often display dietary indiscretion, due to their close contact with humans. Dietary indiscretion is the tendency for certain animals to feed on unusual items, or undergo drastic changes in feeding behaviour. The unusual items can include non-foodstuffs, such as garbage or foreign objects, or foodstuffs that are not normally consumed by the animal. The changes in feeding behaviour can include the ingestion of spoiled or raw food, or consuming a...

Academy Awards ke-82Tanggal7 Maret 2010 (2010-03-07)TempatKodak TheatreHollywood, Los Angeles, CaliforniaPembawa acaraAlec BaldwinSteve Martin[1]Pembawa pra-acaraJess CagleKathy IrelandSherri Shepherd[2]ProduserBill MechanicAdam Shankman[3]Pengarah acaraHamish Hamilton[4]SorotanFilm TerbaikThe Hurt LockerPenghargaan terbanyakThe Hurt Locker (6)Nominasi terbanyakAvatar dan The Hurt Locker (9)Liputan televisiJaringanABCDurasi3 jam, 37 menit[5]Peringk...

 

Policy on permits required to enter Australia and its external territories This article is part of a series on thePolitics ofAustralia Constitution The Crown Monarch Charles III Governor-General David Hurley Executive Prime Minister Anthony Albanese (ALP) Deputy Prime Minister Richard Marles (ALP) Federal Executive Council Ministry Albanese ministry Cabinet Legislature Australian Parliament Senate President Sue Lines (ALP) Leader Penny Wong (ALP) House of Representatives Speaker Milton Dick (...

 

Urban park in Timișoara, Romania Civic ParkCity ParkThe floral clock in the Civic ParkTypeUrban parkLocationTimișoara, RomaniaCoordinates45°45′14″N 21°13′53″E / 45.75389°N 21.23139°E / 45.75389; 21.23139Area7.6 haEstablished1971Administered byTimișoara City HallSpecies89[1] The Civic Park (Romanian: Parcul Civic), also known as the City Park (Romanian: Parcul Cetății), is an urban park in central Timișoara. Location The Civic Park is loca...

Centaur adalah tahapan roket yang dirancang untuk digunakan sebagai tahap atas kendaraan peluncuran ruang angkasa dan saat ini digunakan pada Atlas V. Centaur meningkatkan muatan payload satelit untuk orbit geosynchronous atau, dalam kasus penyelidikan ruang antarplanet. Centaur adalah tahap atas energi tinggi pertama di dunia, pembakaran hidrogen cair (LH2) dan oksigen cair (LOX), dan telah memungkinkan peluncuran beberapa misi ilmiah paling penting NASA selama sejarah 50 tahun. Lihat pula ...

 

Japanese manga series For the relationship research facility Love Lab, see John Gottman. Love LabCover of the first manga volume恋愛ラボ(Rabu Rabo)GenreRomantic comedy, slice of life[1] MangaWritten byRuri MiyaharaPublished byHoubunshaImprintManga Time ComicsMagazineManga Home → Manga Time SpecialDemographicSeinenOriginal run2006 – 2019Volumes15 (List of volumes) Anime television seriesDirected byMasahiko OhtaProduced byYosuke TobaTsuguharu SakuraiHiromasa ...

 

Former president of Mozambique (1933–1986) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Samora Machel – news · newspapers · books · scholar · JSTOR (October 2017) (Learn how and when to remove this template message) His ExcellencySamora MachelMachel in 19851st President of MozambiqueIn office25 June 197...

French author (1628–1703) Charles PerraultPortrait (detail) by Charles Le Brun, c. 1670Born(1628-01-12)12 January 1628Paris, FranceDied16 May 1703(1703-05-16) (aged 75)Paris, FranceOccupationWriterauthormember of the Académie FrançaiseGenreFairy taleNotable worksThe Sleeping BeautyLittle Red Riding HoodCinderellaPuss in BootsBluebeardRelativesPierre Perrault (brother)Claude Perrault (brother)Marie-Jeanne L'Héritier (niece) Charles Perrault (/pɛˈroʊ/ peh-ROH, US also /pəˈr...

 

Questa voce sull'argomento contee dell'Illinois è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Contea di KnoxconteaLocalizzazioneStato Stati Uniti Stato federato Illinois AmministrazioneCapoluogoGalesburg Data di istituzione1825 TerritorioCoordinatedel capoluogo40°55′48″N 90°12′36″W / 40.93°N 90.21°W40.93; -90.21 (Contea di Knox)Coordinate: 40°55′48″N 90°12′36″W / 40.93°N 90.21°W40.9...

 

Genus of fish MylopharyngodonTemporal range: Middle Miocene - Recent Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Actinopterygii Order: Cypriniformes Family: Cyprinidae Subfamily: Squaliobarbinae Genus: MylopharyngodonW. K. H. Peters, 1881 Species Mylopharyngodon piceus (black carp) †Mylopharyngodon wui Mylopharyngodon is a genus of fish belongs to the family Cyprinidae, it contains two species: the living black carp (Mylopharyngodon piceus) and the ...

Election in West Virginia Main article: 1888 United States presidential election 1888 United States presidential election in West Virginia ← 1884 November 6, 1888 1892 → Turnout25.78% of the total population 4.41 pp[1]   Nominee Grover Cleveland Benjamin Harrison Party Democratic Republican Home state New York Indiana Running mate Allen Thurman Levi P. Morton Electoral vote 6 0 Popular vote 78,677 78,171 Percentage 49.35% 49.03% County Re...

 

Wine making in the United States of America 2005 Eyrie Vineyards Pinot gris Wine has been produced in the United States since the 1500s, with the first widespread production beginning in New Mexico in 1628.[1][2][3] Today, wine production is undertaken in all fifty states, with California producing 84 percent of all US wine. The North American continent is home to several native species of grape, including Vitis labrusca, Vitis riparia, Vitis rotundifolia, and Vitis vu...

 

Government of Japan during the Kamakura period (1192–1333) Kamakura shogunate鎌倉幕府Kamakura bakufu1192–1333 Mon of the Minamoto clan, of which the Seiwa Genji were a branch CapitalHeian-kyō(Emperor's palace)Kamakura(Shōgun's residence)Common languagesLate Middle JapaneseReligion Shinbutsu-shūgō[1]Japanese Buddhism[2]—Zen Buddhism[3]—True Pure Land[3]—Nichiren Buddhism[3]GovernmentDiarchial[a] feudal hereditarymilitary di...

This list is incomplete; you can help by adding missing items. (April 2020) Former capitals in the history of China This is a list of historical capitals of China. Four Great Ancient Capitals There are traditionally four major historical capitals of China referred to as the Four Great Ancient Capitals of China (simplified Chinese: 中国四大古都; traditional Chinese: 中國四大古都; pinyin: Zhōngguó Sì Dà Gǔ Dū). The four are Beijing, Nanjing, Luoyang and Xi'an (Chan...

 

هذه المقالة بحاجة لصندوق معلومات. فضلًا ساعد في تحسين هذه المقالة بإضافة صندوق معلومات مخصص إليها. جزء من سلسلة مقالات سياسة لبنانلبنان الدستور الدستور اتفاق الطائف الطوائف حقوق الإنسان السلطة التنفيذية رئيس الجمهورية (قائمة) ميشال عون مجلس الوزراء رئيس الوزراء نجيب ميقا...

 

هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (يوليو 2016) إلدريج الإحداثيات 37°49′47″N 92°44′57″W / 37.8297°N 92.7492°W / 37.8297; -92.7492   ت�...

Vous lisez un « bon article » labellisé en 2011. True Blood Logo original de la série Données clés Titre original True Blood Genre Série dramatique, fantastique, romantique ; thriller Création Alan Ball Production Alan BallYour Face Goes Here EntertainmentHome Box Office Acteurs principaux Anna PaquinStephen MoyerRyan KwantenAlexander Skarsgård(Liste complète) Musique Nathan Barr (compositeur) Jace Everett (générique) Pays d'origine États-Unis Chaîne d'origine HB...

 

August von Rothmund August von Rothmund (Volkach, 1º agosto 1830 – Monaco di Baviera, 27 ottobre 1906) è stato un oculista tedesco. Biografia Nel 1853 conseguì dottorato all'Università di Monaco e proseguì i suoi studi a Berlino con Albrecht von Graefe (1828-1870); a Praga con Carl Ferdinand von Arlt (1812-1887) e a Vienna con Eduard Jäger von Jaxtthal (1818-1884). Nel 1854 tornò a Monaco, dove divenne direttore del policlinico chirurgico (Reisingerianum). Nel 1863 fu nominato profes...