Linear code

In coding theory, a linear code is an error-correcting code for which any linear combination of codewords is also a codeword. Linear codes are traditionally partitioned into block codes and convolutional codes, although turbo codes can be seen as a hybrid of these two types.[1] Linear codes allow for more efficient encoding and decoding algorithms than other codes (cf. syndrome decoding).[citation needed]

Linear codes are used in forward error correction and are applied in methods for transmitting symbols (e.g., bits) on a communications channel so that, if errors occur in the communication, some errors can be corrected or detected by the recipient of a message block. The codewords in a linear block code are blocks of symbols that are encoded using more symbols than the original value to be sent.[2] A linear code of length n transmits blocks containing n symbols. For example, the [7,4,3] Hamming code is a linear binary code which represents 4-bit messages using 7-bit codewords. Two distinct codewords differ in at least three bits. As a consequence, up to two errors per codeword can be detected while a single error can be corrected.[3] This code contains 24 = 16 codewords.

Definition and parameters

A linear code of length n and dimension k is a linear subspace C with dimension k of the vector space where is the finite field with q elements. Such a code is called a q-ary code. If q = 2 or q = 3, the code is described as a binary code, or a ternary code respectively. The vectors in C are called codewords. The size of a code is the number of codewords and equals qk.

The weight of a codeword is the number of its elements that are nonzero and the distance between two codewords is the Hamming distance between them, that is, the number of elements in which they differ. The distance d of the linear code is the minimum weight of its nonzero codewords, or equivalently, the minimum distance between distinct codewords. A linear code of length n, dimension k, and distance d is called an [n,k,d] code (or, more precisely, code).

We want to give the standard basis because each coordinate represents a "bit" that is transmitted across a "noisy channel" with some small probability of transmission error (a binary symmetric channel). If some other basis is used then this model cannot be used and the Hamming metric does not measure the number of errors in transmission, as we want it to.

Generator and check matrices

As a linear subspace of , the entire code C (which may be very large) may be represented as the span of a set of codewords (known as a basis in linear algebra). These basis codewords are often collated in the rows of a matrix G known as a generating matrix for the code C. When G has the block matrix form , where denotes the identity matrix and P is some matrix, then we say G is in standard form.

A matrix H representing a linear function whose kernel is C is called a check matrix of C (or sometimes a parity check matrix). Equivalently, H is a matrix whose null space is C. If C is a code with a generating matrix G in standard form, , then is a check matrix for C. The code generated by H is called the dual code of C. It can be verified that G is a matrix, while H is a matrix.

Linearity guarantees that the minimum Hamming distance d between a codeword c0 and any of the other codewords c ≠ c0 is independent of c0. This follows from the property that the difference c − c0 of two codewords in C is also a codeword (i.e., an element of the subspace C), and the property that d(c, c0) = d(c − c0, 0). These properties imply that

In other words, in order to find out the minimum distance between the codewords of a linear code, one would only need to look at the non-zero codewords. The non-zero codeword with the smallest weight has then the minimum distance to the zero codeword, and hence determines the minimum distance of the code.

The distance d of a linear code C also equals the minimum number of linearly dependent columns of the check matrix H.

Proof: Because , which is equivalent to , where is the column of . Remove those items with , those with are linearly dependent. Therefore, is at least the minimum number of linearly dependent columns. On another hand, consider the minimum set of linearly dependent columns where is the column index set. . Now consider the vector such that if . Note because . Therefore, we have , which is the minimum number of linearly dependent columns in . The claimed property is therefore proven.

Example: Hamming codes

As the first class of linear codes developed for error correction purpose, Hamming codes have been widely used in digital communication systems. For any positive integer , there exists a Hamming code. Since , this Hamming code can correct a 1-bit error.

Example : The linear block code with the following generator matrix and parity check matrix is a Hamming code.

Example: Hadamard codes

Hadamard code is a linear code and is capable of correcting many errors. Hadamard code could be constructed column by column : the column is the bits of the binary representation of integer , as shown in the following example. Hadamard code has minimum distance and therefore can correct errors.

Example: The linear block code with the following generator matrix is a Hadamard code: .

Hadamard code is a special case of Reed–Muller code. If we take the first column (the all-zero column) out from , we get simplex code, which is the dual code of Hamming code.

Nearest neighbor algorithm

The parameter d is closely related to the error correcting ability of the code. The following construction/algorithm illustrates this (called the nearest neighbor decoding algorithm):

Input: A received vector v in

Output: A codeword in closest to , if any.

  • Starting with , repeat the following two steps.
  • Enumerate the elements of the ball of (Hamming) radius around the received word , denoted .
    • For each in , check if in . If so, return as the solution.
  • Increment . Fail only when so enumeration is complete and no solution has been found.

We say that a linear is -error correcting if there is at most one codeword in , for each in .

Codes in general are often denoted by the letter C, and a code of length n and of rank k (i.e., having n code words in its basis and k rows in its generating matrix) is generally referred to as an (nk) code. Linear block codes are frequently denoted as [nkd] codes, where d refers to the code's minimum Hamming distance between any two code words.

(The [nkd] notation should not be confused with the (nMd) notation used to denote a non-linear code of length n, size M (i.e., having M code words), and minimum Hamming distance d.)

Singleton bound

Lemma (Singleton bound): Every linear [n,k,d] code C satisfies .

A code C whose parameters satisfy k +d = n + 1 is called maximum distance separable or MDS. Such codes, when they exist, are in some sense best possible.

If C1 and C2 are two codes of length n and if there is a permutation p in the symmetric group Sn for which (c1,...,cn) in C1 if and only if (cp(1),...,cp(n)) in C2, then we say C1 and C2 are permutation equivalent. In more generality, if there is an monomial matrix which sends C1 isomorphically to C2 then we say C1 and C2 are equivalent.

Lemma: Any linear code is permutation equivalent to a code which is in standard form.

Bonisoli's theorem

A code is defined to be equidistant if and only if there exists some constant d such that the distance between any two of the code's distinct codewords is equal to d.[4] In 1984 Arrigo Bonisoli determined the structure of linear one-weight codes over finite fields and proved that every equidistant linear code is a sequence of dual Hamming codes.[5]

Examples

Some examples of linear codes include:

Generalization

Hamming spaces over non-field alphabets have also been considered, especially over finite rings, most notably Galois rings over Z4. This gives rise to modules instead of vector spaces and ring-linear codes (identified with submodules) instead of linear codes. The typical metric used in this case the Lee distance. There exist a Gray isometry between (i.e. GF(22m)) with the Hamming distance and (also denoted as GR(4,m)) with the Lee distance; its main attraction is that it establishes a correspondence between some "good" codes that are not linear over as images of ring-linear codes from .[6][7][8]

Some authors have referred to such codes over rings simply as linear codes as well.[9]

See also

References

  1. ^ William E. Ryan and Shu Lin (2009). Channel Codes: Classical and Modern. Cambridge University Press. p. 4. ISBN 978-0-521-84868-8.
  2. ^ MacKay, David, J.C. (2003). Information Theory, Inference, and Learning Algorithms (PDF). Cambridge University Press. p. 9. Bibcode:2003itil.book.....M. ISBN 9780521642989. In a linear block code, the extra bits are linear functions of the original bits; these extra bits are called parity-check bits{{cite book}}: CS1 maint: multiple names: authors list (link)
  3. ^ Thomas M. Cover and Joy A. Thomas (1991). Elements of Information Theory. John Wiley & Sons, Inc. pp. 210–211. ISBN 978-0-471-06259-2.
  4. ^ Etzion, Tuvi; Raviv, Netanel (2013). "Equidistant codes in the Grassmannian". arXiv:1308.6231 [math.CO].
  5. ^ Bonisoli, A. (1984). "Every equidistant linear code is a sequence of dual Hamming codes". Ars Combinatoria. 18: 181–186.
  6. ^ Marcus Greferath (2009). "An Introduction to Ring-Linear Coding Theory". In Massimiliano Sala; Teo Mora; Ludovic Perret; Shojiro Sakata; Carlo Traverso (eds.). Gröbner Bases, Coding, and Cryptography. Springer Science & Business Media. ISBN 978-3-540-93806-4.
  7. ^ "Encyclopedia of Mathematics". www.encyclopediaofmath.org.
  8. ^ J.H. van Lint (1999). Introduction to Coding Theory (3rd ed.). Springer. Chapter 8: Codes over ℤ4. ISBN 978-3-540-64133-9.
  9. ^ S.T. Dougherty; J.-L. Kim; P. Sole (2015). "Open Problems in Coding Theory". In Steven Dougherty; Alberto Facchini; Andre Gerard Leroy; Edmund Puczylowski; Patrick Sole (eds.). Noncommutative Rings and Their Applications. American Mathematical Soc. p. 80. ISBN 978-1-4704-1032-2.

Bibliography

  • J. F. Humphreys; M. Y. Prest (2004). Numbers, Groups and Codes (2nd ed.). Cambridge University Press. ISBN 978-0-511-19420-7. Chapter 5 contains a more gentle introduction (than this article) to the subject of linear codes.

Read other articles:

Основная статья: Исторический источник Среди источников по древней и средневековой истории Африки можно выделить три основные категории: устные, вещественные и письменные. Содержание 1 Устные источники 2 Вещественные источники 3 Письменные источники 3.1 Внутренние письм...

 

Administrative entry restrictions Not to be confused with Visa requirements for Thai citizens. Front cover of a Taiwan passport Visa requirements for Taiwanese citizens are administrative entry restrictions by the authorities of other states placed on nationals of the Republic of China (Taiwan) who have also established household registration in Taiwan. The law of Taiwan has a distinction on its nationals' right of abode to its territory for those with or without household registration in Tai...

 

Disambiguazione – Anubis rimanda qui. Se stai cercando altri significati, vedi Anubis (disambigua). Disambiguazione – Se stai cercando altri significati, vedi Anubi (disambigua). Anubis Anubi (anche Anubis, dal greco Ἄνουβις, ellenizzazione[1] dell'originale egizio inpw o anepw[2]: Inepu, Inpu, probabilmente pronunciato Anapa[3]) è una divinità egizia appartenente alla religione dell'antico Egitto. Era il dio della mummificazione e dei cimiteri&#...

Uppslagsordet ”CIA” leder hit. För andra betydelser, se CIA (olika betydelser). Central Intelligence AgencyCIA CIA:s sigill.UnderordnadUSA:s presidentOrganisationstypFristående myndighetLedningDirector of the Central Intelligence AgencySäteGeorge Bush Center for IntelligenceLangley, Fairfax CountyVirginia, USASyfteUnderrättelseverksamhetFöregångareOffice of Strategic Services (OSS)Inrättad26 juli 1947BudgetSekretessbelagt[1][2]Antal anställdaSekretessbelagt[3]20 000 upps...

 

Unincorporated community in Ohio, U.S. Location of Fryburg, Ohio St. John Church Fryburg (also Freyburg, Freyburgh, or Fryburgh)[1] is an unincorporated community located in central Pusheta Township, Auglaize County, Ohio, United States. It is located between Wapakoneta and Botkins. The community is served by the Wapakoneta City School District and the Wapakoneta (45895) post office. History Fryburg was laid out in 1848 at the site of a former Native American settlement.[2] A ...

 

Russian politician In this name that follows Eastern Slavic naming customs, the patronymic is Igorevich and the family name is Samokish. Vladimir SamokishВладимир СамокишDeputy of the 8th State DumaIncumbentAssumed office 19 September 2021 Personal detailsBorn (1975-09-20) 20 September 1975 (age 48)Tomsk, Russian Soviet Federative Socialist Republic, USSRPolitical partyUnited RussiaAlma materTomsk State University Vladimir Samokish (Russian: Владимир Иго...

Lokasi Provinsi Eskişehir Provinsi Eskişehir adalah sebuah provinsi Turki. Provinsi ini terletak di bagian barat laut Turki. Ibu kota provinsi ini terletak di Eskişehir. Pada tahun 2007, provinsi ini memiliki jumlah penduduk sebesar 724.849 jiwa dan memiliki luas wilayah 13.652 km². Provinsi ini memiliki angka kepadatan penduduk 53 jiwa/km². Distrik Provinsi Eskişehir terbagi menjadi 14 distrik: Alpu Beylikova Çifteler Odunpazarı Tepebaşı Günyüzü Han İnönü Mahmudiye Mihal...

 

Cet article est une ébauche concernant une chanson, le Concours Eurovision de la chanson et l’Australie. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. We Got Love Jessica Mauboy interprétant We Got Love lors d'une répétition avant la 2e demi-finale de l'Eurovision 2018 à Lisbonne. Chanson de Jessica Mauboy au Concours Eurovision de la chanson 2018 Sortie 9 mars 2018 Durée 3:22 Langue Anglais Genre...

 

Disambiguazione – Se stai cercando l'omonima designazione societaria della AC Salernitana Femminile, attiva dal 1982 al 2010, vedi Associazione Calcio Salernitana Femminile. U.S.F. SalernitanaCalcio Le Granatine, le girls Segni distintivi Uniformi di gara Casa Trasferta Colori sociali Granata Simboli Ippocampo Dati societari Città Salerno Nazione  Italia Confederazione UEFA Federazione FIGC Fondazione 1971 Scioglimento1977 Stadio Stadio Donato Vestuti(9 000 posti) Palmarès Tito...

Brendan Rodgers Rodgers sebagai manajer Leicester City pada 2021Informasi pribadiNama lengkap Brendan Rodgers[1]Tanggal lahir 26 Januari 1973 (umur 51)[2]Tempat lahir Carnlough, Irlandia UtaraTinggi 170 cm (5 ft 7 in)[3]Karier junior1984–1987 Ballymena UnitedKarier senior*Tahun Tim Tampil (Gol)1987–1990 Ballymena United 1990–1993 Reading 0 (0)1993–1994 Newport 1994–1995 Witney Town 1995–1996 Newbury Town Tim nasional1988 Irlandia Utara ...

 

Commuter railway lines in London, England Lea Valley linesLondon Overground Class 710 at Hackney DownsOverviewStatusOperationalOwnerNetwork Rail (Anglia Route)LocaleGreater LondonEast of EnglandTerminiEnfield TownCheshuntChingfordLondon Liverpool StreetStations31ServiceTypeCommuter rail, Suburban railSystemNational RailServices5Operator(s)Greater AngliaLondon OvergroundDepot(s)IlfordRolling stockClass 710 AventraClass 745 FLIRTClass 720 AventraTechnicalNumber of tracks2–4Track gauge1,435...

 

Movements in various forms of art and design This article is about the concept in the arts. For other uses, see Minimalism (disambiguation). This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs attention from an expert in architecture or arts. The specific problem is: redundant content and large tracts of unsourced and unverified text and in-text lists. WikiProject Archi...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Foreign relations of Mozambique – news · newspapers · books · scholar · JSTOR (February 2008) (Learn how and when to remove this message) Politics of Mozambique Constitution Human rights Executive President Filipe Nyusi Prime Minister Carlos Agostinho do Rosár...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Januari 2023. MIN 18 JakartaMadrasah Ibtidaiyah Negeri 18 JakartaInformasiJenisNegeriAlamatLokasiJl. Bulaksari Rt 10/09 No 41, Jakarta Timur, DKI Jakarta, IndonesiaSitus webLaman di Kementerian Pendidikan Nasional, Republik Indonesia 2010 / 2011Moto MIN 18 Jaka...

 

Canadian frozen food company McCain Foods LimitedCompany typePrivateIndustryFrozen foodFoundedFlorenceville, New Brunswick, Canada (1957)FoundersHarrison McCain Wallace McCainHeadquarters439 King Street West, 5th Floor, Toronto, Ontario, CanadaArea servedWorldwideKey peopleJames Scott McCain - ChairmanMax Koeune - President and CEO of McCain Foods Limited Danielle Barran - President of McCain Foods (Canada)ProductsFrench fries, appetizers, vegetables, desserts, entrees, and oven mealsRevenue ...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Bear Mountain State Parkway – news · newspapers · books · scholar · JSTOR (December 2019) (Learn how and when to remove this message) Bear Mountain State ParkwayBear Mountain State Parkway highlighted in redRoute informationMaintained by NYSDOTLength6.20 m...

 

Міністерство оборони Північної МакедоніїМинистерство за одбрана на Македонија (укр. МОПМ, мак. МОРМ) Емблема Армії Республіки Північна МакедоніяЗагальна інформаціяКраїна  Північна МакедоніяДата створення 1991Попередні відомства Республіканський секретаріат народн�...

 

Sentier de grande randonnée de pays Tour des Monts d'AubracPaysage typique de l'Aubrac.DésignationAutre nom GR de Pays Tour des Monts d'Aubrac'Type sentier de grande randonnée de pays (GRP)TracéPoint de départ Aumont-AubracLongueur 167 km pour sa plus grande boucle.Alt. maximale 1 468 mAlt. minimale 900 mAttractions lacs naturels, cascades, floraison des prairies, burons d'altitudes, églises romanes, châteaux, voie romaine.Difficulté moyenne (chemin en moyenne mont...

В Википедии есть статьи о других людях с фамилией Вдовенко. Герасим Андреевич Вдовенко Дата рождения 4 марта 1867(1867-03-04) Место рождения станица Государственная, Терская область, Российская империя Дата смерти 22 января 1946(1946-01-22) (78 лет) Место смерти СССР Род деятельност...

 

Este artículo o sección necesita referencias que aparezcan en una publicación acreditada. Busca fuentes: «Inmigración irregular» – noticias · libros · académico · imágenesEste aviso fue puesto el 15 de enero de 2009. Se considera inmigración irregular o inmigración ilegal al movimiento migratorio de personas a través de las fronteras sin atender los requerimientos legales del país de destino y en ocasiones también del país de procedencia. La persona que ...