Input-to-state stability (ISS)[1][2][3][4][5][6] is a stability notion widely used to study stability of nonlinear control systems with external inputs. Roughly speaking, a control system is ISS if it is globally asymptotically stable in the absence of external inputs and if its trajectories are bounded by a function of the size of the input for all sufficiently large times.
The importance of ISS is due to the fact that the concept has bridged the gap between input–output and state-space methods, widely used within the control systems community.
ISS unified the Lyapunov and input-output stability theories and revolutionized our view on stabilization of nonlinear systems, design of robust nonlinear observers, stability of nonlinear interconnected control systems, nonlinear detectability theory, and supervisory adaptive control.
This made ISS the dominating stability paradigm in nonlinear control theory, with such diverse applications as robotics, mechatronics, systems biology, electrical and aerospace engineering, to name a few.
The notion of ISS was introduced for systems described by ordinary differential equations by Eduardo Sontag in 1989.[7]
Since that the concept was successfully used for many other classes of control systems including systems governed by partial differential equations, retarded systems, hybrid systems, etc.[5]
To define ISS and related properties, we exploit the following classes of comparison functions. We denote by the set of continuous increasing functions with and the set of continuous strictly decreasing functions with . Then we can denote as functions where for all and for all .
System (1) is called globally asymptotically stable at zero (0-GAS) if the corresponding system with zero input
WithoutInputs
is globally asymptotically stable, that is there exist
so that for all initial values
and all times the following estimate is valid for solutions of (WithoutInputs)
GAS-Estimate
System (1) is called input-to-state stable (ISS) if there exist functions
and so that for all initial values , all admissible inputs and all times the following inequality holds
2
The function in the above inequality is called the gain.
Clearly, an ISS system is 0-GAS as well as BIBO stable (if we put the output equal to the state of the system). The converse implication is in general not true.
It can be also proved that if , then .
Characterizations of input-to-state stability property
For an understanding of ISS its restatements in terms of other stability properties are of great importance.
System (1) is called globally stable (GS) if there exist
such that , and it holds that
GS
System (1) satisfies the asymptotic gain (AG) property if there exists
: , it holds that
AG
The following statements are equivalent for sufficiently regular right-hand side [8]
The proof of this result as well as many other characterizations of ISS can be found in the papers
[8] and.[9]
Other characterizations of ISS that are valid under very mild restrictions on the regularity of the rhs and are applicable to more general infinite-dimensional systems, have been shown in.[10]
An important result due to E. Sontag and Y. Wang is that a system (1) is ISS if and only if there exists a smooth ISS-Lyapunov function for it.[9]
Examples
Consider a system
Define a candidate ISS-Lyapunov function by
Choose a Lyapunov gain by
.
Then we obtain that for it holds
This shows that is an ISS-Lyapunov function for a considered system with the Lyapunov gain .
Interconnections of ISS systems
One of the main features of the ISS framework is the possibility to study stability properties of interconnections of input-to-state stable systems.
Consider the system given by
WholeSys
Here , and are Lipschitz continuous in uniformly with respect to the inputs from the -th subsystem.
For the -th subsystem of (WholeSys) the definition of an ISS-Lyapunov function can be written as follows.
A smooth function is an ISS-Lyapunov function (ISS-LF)
for the -th subsystem of (WholeSys), if there exist
functions , ,
, , and a positive-definite function , such that:
and it holds
Cascade interconnections
Cascade interconnections are a special type of interconnection, where the dynamics of the -th subsystem does not depend on the states of the subsystems . Formally, the cascade interconnection can be written as
If all subsystems of the above system are ISS, then the whole cascade interconnection is also ISS.[7][4]
In contrast to cascades of ISS systems, the cascade interconnection of 0-GAS systems is in general not 0-GAS. The following example illustrates this fact. Consider a system given by
Ex_GAS
Both subsystems of this system are 0-GAS, but for sufficiently large initial states and for a certain finite time it holds for , i.e. the system (Ex_GAS) exhibits finite escape time, and thus is not 0-GAS.
Feedback interconnections
The interconnection structure of subsystems is characterized by the internal Lyapunov gains . The question, whether the interconnection (WholeSys) is ISS, depends on the properties of the gain operator defined by
The following small-gain theorem establishes a sufficient condition for ISS of the interconnection of ISS systems. Let be an ISS-Lyapunov function for -th subsystem of (WholeSys) with corresponding gains , . If the nonlinear small-gain condition
SGC
holds, then the whole interconnection is ISS.[11][12]
Small-gain condition (SGC) holds iff for each cycle in (that is for all , where ) and for all it holds
The small-gain condition in this form is called also cyclic small-gain condition.
System (1) is called integral input-to-state stable (ISS) if there exist functions and so that for all initial values , all admissible inputs and all times the following inequality holds
3
In contrast to ISS systems, if a system is integral ISS, its trajectories may be unbounded even for bounded inputs. To see this put for all and take . Then the estimate (3) takes the form
and the right hand side grows to infinity as .
As in the ISS framework, Lyapunov methods play a central role in iISS theory.
A smooth function is called an iISS-Lyapunov function for (1), if , and positive-definite function, such that:
and
it holds:
An important result due to D. Angeli, E. Sontag and Y. Wang is that system (1) is integral ISS if and only if there exists an iISS-Lyapunov function for it.
Note that in the formula above is assumed to be only positive definite.
It can be easily proved,[13] that if is an iISS-Lyapunov function with , then is actually an ISS-Lyapunov function for a system (1).
This shows in particular, that every ISS system is integral ISS. The converse implication is not true, as the following example shows. Consider the system
This system is not ISS, since for large enough inputs the trajectories are unbounded. However, it is integral ISS with an iISS-Lyapunov function defined by
An important role are also played by local versions of the ISS property. A system (1) is called locally ISS (LISS) if there exist a constant and functions
and so that for all , all admissible inputs and all times it holds that
4
An interesting observation is that 0-GAS implies LISS.[14]
Here is the state of the system (TDS) at time , and satisfies certain assumptions to guarantee existence and uniqueness of solutions of the system (TDS).
System (TDS) is ISS if and only if there exist functions and such that for every , every admissible input and for all , it holds that
ISS-TDS
In the ISS theory for time-delay systems two different Lyapunov-type sufficient conditions have been proposed: via ISS Lyapunov-Razumikhin functions[17] and by ISS Lyapunov-Krasovskii functionals.[18] For converse Lyapunov theorems for time-delay systems see.[19]
ISS of other classes of systems
Input-to-state stability of the systems based on time-invariant ordinary differential equations is a quite developed theory, see a recent monograph.[6] However, ISS theory of other classes of systems is also being investigated for time-variant ODE systems[20] and hybrid systems.[21][22] In the last time also certain generalizations of ISS concepts to infinite-dimensional systems have been proposed.[23][24][3][25]
^Eduardo D. Sontag. Mathematical Control Theory: Finite-Dimensional Systems. Springer-Verlag, London, 1998
^Hassan K. Khalil. Nonlinear Systems. Prentice Hall, 2002.
^ abIasson Karafyllis and Zhong-Ping Jiang. Stability and stabilization of nonlinear systems. Communications and Control Engineering Series. Springer-Verlag London Ltd., London, 2011.
^ abEduardo D. Sontag. Input to state stability: basic concepts and results. In Nonlinear and optimal control theory, volume 1932 of Lecture Notes in Math., pages 163–220, Berlin, 2008. Springer
^Andrii Mironchenko and Fabian Wirth. Characterizations of input-to-state stability for infinite-dimensional systems. IEEE Trans. Autom. Control, 63(6): 1602-1617, 2018.
^Zhong-Ping Jiang, Iven M. Y. Mareels, and Yuan Wang. A Lyapunov formulation of the nonlinear small-gain theorem for interconnected ISS systems. Automatica J. IFAC, 32(8):1211–1215, 1996.
^Sergey Dashkovskiy, Björn S. Rüffer, and Fabian R. Wirth. An ISS Lyapunov function for networks of ISS systems. In Proceedings of the 17th International Symposium on Mathematical Theory of Networks and Systems (MTNS), Kyoto, Japan, July 24–28, 2006, pages 77–82, 2006
^See Remark 2.4. in Eduardo D. Sontag and Yuan Wang. On characterizations of the input-to-state stability property. Systems Control Lett., 24(5):351–359, 1995
^Lemma I.1, p.1285 in Eduardo D. Sontag and Yuan Wang. New characterizations of input-to-state stability. IEEE Trans. Autom. Control, 41(9):1283–1294, 1996
^Lars Grüne. Input-to-state dynamical stability and its Lyapunov function characterization. IEEE Trans. Autom. Control, 47(9):1499–1504, 2002.
^Z.-P. Jiang, A. R. Teel, and L. Praly. Small-gain theorem for ISS systems and applications. Math. Control Signals Systems, 7(2):95–120, 1994.
^Andrew R. Teel. Connections between Razumikhin-type theorems and the ISS nonlinear small gain theorem. IEEE Trans. Autom. Control, 43(7):960–964, 1998.
^P. Pepe and Z.-P. Jiang. A Lyapunov-Krasovskii methodology for ISS and iISS of time-delay systems. Systems Control Lett., 55(12):1006–1014, 2006.
^Iasson Karafyllis. Lyapunov theorems for systems described by retarded functional differential equations. Nonlinear Analysis: Theory, Methods & Applications, 64(3):590 – 617, 2006.
^Yuandan Lin, Yuan Wang, and Daizhan Cheng. On nonuniform and semi-uniform input-to-state stability for time-varying systems. In IFAC World Congress, Prague, 2005.
^Chaohong Cai and Andrew R. Teel. Characterizations of input-to-state stability for hybrid systems. Systems & Control Letters, 58(1):47–53, 2009.
^D. Nesic and A.R. Teel. A Lyapunov-based small-gain theorem for hybrid ISS systems. In Proceedings of the 47th IEEE Conference on Decision and Control, Cancun, Mexico, Dec. 9-11, 2008, pages 3380–3385, 2008.
^F. Mazenc and C. Prieur. Strict Lyapunov functions for semilinear parabolic partial differential equations. Mathematical Control and Related Fields, 1:231–250, June 2011.
Overview of the use of capital punishment in several countries Maintain the death penalty in both law and practice Abolished in practice (no executions in over 10 years and under a moratorium) Abolished in law, except under exceptional circumstances such as during war Completely abolished Capital punishment, also called the death penalty, is the state-sanctioned killing of a person as a punishment for a crime. It has historically been used in al...
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Plato dan Aristoteles sedang berjalan dan bersengketa. Detali dari Mazhab Athena (1509-1511) karya Raphael Likeion (Bahasa Yunani Kuno: Λύκειον, Lykeion) adalah sebuah kuil yang didedikasikan kepada Apollo Lyceus (Apollo sang dewa serigala[1...
Bagian dari seriSistem ekonomi Ideologi Anarkis Kapitalis Komunis Korporatis Dirigis Fasis Georgis Islam Laissez-faire Sosialis pasar Merkantilis Neo-merkantilis Partisipan Proteksionis Sosialis Kapitalis negara Sindikalis Arah Tertutup (autarki) Terdesentralisasi Digital Ganda Hadiah Informal Pasar Campuran Alami Terbuka Terencana Robinson Crusoe Mandiri Bawah tanah Kepulauan vertikal Virtual Model kawasan Anglo-Saxon Cina Asia Timur Jerman Nordik Rhein Singapura Soviet Sektor Milik bersama ...
لمعانٍ أخرى، طالع جون كولير (توضيح). جون كولير (بالإنجليزية: John Collier) معلومات شخصية الميلاد 27 يناير 1850(1850-01-27)لندن، بريطانيا الوفاة 11 أبريل 1934 (84 سنة)لندن، بريطانيا الجنسية بريطاني الحياة العملية المدرسة الأم أكاديمية الفنون الجميلة بميونخكلية إيتونكلية سلايد للف...
Artikel ini perlu diterjemahkan dari bahasa Inggris ke bahasa Indonesia. Artikel ini ditulis atau diterjemahkan secara buruk dari Wikipedia bahasa Inggris. Jika halaman ini ditujukan untuk komunitas bahasa Inggris, halaman itu harus dikontribusikan ke Wikipedia bahasa Inggris. Lihat daftar bahasa Wikipedia. Artikel yang tidak diterjemahkan dapat dihapus secara cepat sesuai kriteria A2. Jika Anda ingin memeriksa artikel ini, Anda boleh menggunakan mesin penerjemah. Namun ingat, mohon tidak men...
American football player (born 1985) American football player Sam BakerSam Baker working with the USC TrojansNo. 72Position:Offensive tacklePersonal informationBorn: (1985-05-30) May 30, 1985 (age 38)Tustin, California, U.S.Height:6 ft 5 in (1.96 m)Weight:301 lb (137 kg)Career informationHigh school:TustinCollege:USC (2003–2007)NFL draft:2008 / Round: 1 / Pick: 21Career history Atlanta Falcons (2008–2014) Career highlights and awards 3× F...
Gereja Katolik Bizantin MakedoniaPenggolonganKatolikOrientasiKatolik Timur, Ritus BizantinBentukpemerintahanEpiskopalStrukturEksarkat Apostolik[gci 1]PemimpinUskup Kiro Stojanov[gci 2]WilayahMakedoniaKantor pusatKatedral Maria Diangkat Ke Surga, Strumica, MakedoniaPendiriPaus Yohanes Paulus IIDidirikan2001Terpisah dariEparki KriževciJemaat7 parokiUmat15.037 jiwaRohaniwan11 orang[cnewa 1]Nama lainEksarkat Apostolik Makedonia[gci 1] Bagian dari seri Gereja Katol...
Slovak footballer (born 1976) Miroslav Karhan Personal informationDate of birth (1976-06-21) 21 June 1976 (age 47)Place of birth Hlohovec, CzechoslovakiaHeight 1.89 m (6 ft 2 in)Position(s) MidfielderTeam informationCurrent team Nové Mesto nad Váhom (manager)Youth career1986–1993 Spartak TrnavaSenior career*Years Team Apps (Gls)1993–1999 Spartak Trnava 152 (21)1999–2000 Betis 33 (2)2000–2001 Beşiktaş 26 (2)2001–2007 VfL Wolfsburg 173 (9)2007–2011 Mainz 05 1...
خزر Xazarlar خاقانات الخزر خاقان القرن 7 – القرن 10 خاقانات الخزر مابين 650-850 م. عاصمة بلنجر ثم لاحقا اتيل نظام الحكم غير محدّد اللغة لغة خزرية الديانة وثنية، شامانية، ثم لاحقا اليهودية خاقان تونغ يابغو 618-628 م التاريخ الفترة التاريخية العصور الوسطى التأسيس 618 الت�...
Ford Super DutyInformasiProdusenFord Motor CompanyModel untuk tahun1999–sekarangBodi & rangkaKelasTruk pikap kelas berattruk engkel tunggal Truk Engkel GandaTata letakMesin depan, penggerak roda belakang/4WDKronologiPendahuluFord F-250/350 (1992–1997) Ford Super Duty adalah truk pikap dengan kelas di atas 8.500 pon (3.900 kg) yang diproduksi oleh Ford sejak tahun 1998. F-250 sampai F-550 Super Duty diproduksi di Pabrik Truk Kentucky di Louisville, Kentucky. F-650 dan F-...
Iroquois traditionalist, orator, artist, and athlete This article uses bare URLs, which are uninformative and vulnerable to link rot. Please consider converting them to full citations to ensure the article remains verifiable and maintains a consistent citation style. Several templates and tools are available to assist in formatting, such as reFill (documentation) and Citation bot (documentation). (September 2022) (Learn how and when to remove this message) Oren R. Lyons Jr.Born1930 (age ...
State election in Washington, US For related races, see 1940 United States gubernatorial elections. 1940 Washington gubernatorial election ← 1936 November 5, 1940 1944 → Nominee Arthur B. Langlie Clarence Dill Party Republican Democratic Popular vote 392,522 386,706 Percentage 50.2% 49.5% County resultsLanglie: 50–60% 60–70% 70-80%Dill: ...
Peta Azerbaijan menunjukan daerah Xanlar. Khanlar (Jerman: 'Helenendorf'code: de is deprecated ) adalah rayon yang terletak di Azerbaijan barat laut. Rayon Khanlar didirikan pada tahun 1930. Pada tahun 1992, teritori Samukh dipisahkan dari Khanlar, dengan luas 1.030 km² dan populasi 54.000 jiwa. Kota Khanlar adalah kota terbesar yang diikuti dengan Hajimelik. Desa penting adalah: Balchili, Gushgara, Chayli, Mollajalilli, and Topalhasanli. lbsPembagian administratif Azerbaijan Distrik Ab...
سفارة لوكسمبورغ في فرنسا لوكسمبورغ فرنسا الإحداثيات 48°51′37″N 2°18′04″E / 48.8602°N 2.30099°E / 48.8602; 2.30099 البلد فرنسا الاختصاص فرنسا، وموناكو[1] الموقع الالكتروني الموقع الرسمي تعديل مصدري - تعديل سفارة لوكسمبورغ في فرنسا هي أرفع تمثيل دبلوماسي[2] لد...
فيوريل إيزو معلومات شخصية الميلاد 6 فبراير 1947 (العمر 77 سنة)سيبيو مركز اللعب حارس مرمى الجنسية رومانيا الفرق التي دربها سنوات فريق 1984–1991 FC Inter Sibiu [الإنجليزية] (مساعد) 1991–1993 FC Inter Sibiu [الإنجليزية] 1993–1995 رابيد بوخارست 1995 FC Progresul București [الإنجليزية] 199...