The hypothalamic–pituitary–thyroid axis (HPT axis for short, a.k.a. thyroid homeostasis or thyrotropic feedback control) is part of the neuroendocrine system responsible for the regulation of metabolism and also responds to stress.
The hypothalamus senses low circulating levels of thyroid hormone (Triiodothyronine (T3) and Thyroxine (T4)) and responds by releasing thyrotropin-releasing hormone (TRH). The TRH stimulates the anterior pituitary to produce thyroid-stimulating hormone (TSH). The TSH, in turn, stimulates the thyroid to produce thyroid hormone until levels in the blood return to normal. Thyroid hormone exerts negative feedback control over the hypothalamus as well as anterior pituitary, thus controlling the release of both TRH from hypothalamus and TSH from anterior pituitary gland.[2]
The HPA, HPG, and HPT axes are three pathways in which the hypothalamus and pituitary direct neuroendocrine function.
Both peripheral thyroid hormones (iodothyronines) inhibit thyrotropin secretion from the pituitary (negative feedback). Consequently, equilibrium concentrations for all hormones are attained.
TSH secretion is also controlled by thyrotropin releasing hormone (thyroliberin, TRH), whose secretion itself is again suppressed by plasma T4 and T3 in CSF (long feedback, Fekete–Lechan loop).[4] Additional feedback loops are ultrashort feedback control of TSH secretion (Brokken-Wiersinga-Prummel loop)[5] and linear feedback loops controlling plasma protein binding.
Recent research suggested the existence of an additional feedforward motif linking TSH release to deiodinase activity in humans.[6][7][8] The existence of this TSH-T3 shunt could explain why deiodinase activity is higher in hypothyroid patients and why a minor fraction of affected individuals may benefit from substitution therapy with T3.[9]
Convergence of multiple afferent signals in the control of TSH release including but not limited to T3,[10] cytokines[11][12] and TSH receptor antibodies[13] may be the reason for the observation that the relation between free T4 concentration and TSH levels deviates[14][15][16][17] from a pure loglinear relation that has previously been proposed.[18] Recent research suggests that ghrelin also plays a role in the stimulation of T4 production and the subsequent suppression of TSH directly and by negative feedback.[19]
^References used in detailed figure are found in image article in Commons: References.
^Lechan, Ronald M.; Fekete, C (2004). "Feedback regulation of thyrotropin-releasing hormone (TRH): mechanisms for the non-thyroidal illness syndrome". Journal of Endocrinological Investigation. 27 (6 Suppl): 105–19. PMID15481810.
^Prummel MF, Brokken LJ, Wiersinga WM (2004). "Ultra short-loop feedback control of thyrotropin secretion". Thyroid. 14 (10): 825–9. doi:10.1089/thy.2004.14.825. PMID15588378.
^Clark PM, Holder RL, Haque SM, Hobbs FD, Roberts LM, Franklyn JA (2012). "The relationship between serum TSH and free T4 in older people". Journal of Clinical Pathology. 65 (5): 463–5. doi:10.1136/jclinpath-2011-200433. PMID22287691. S2CID43886378.
^Midgley JE, Hoermann R, Larisch R, Dietrich JW (2013). "Physiological states and functional relation between thyrotropin and free thyroxine in thyroid health and disease: In vivo and in silico data suggest a hierarchical model". Journal of Clinical Pathology. 66 (4): 335–42. doi:10.1136/jclinpath-2012-201213. PMID23423518. S2CID46291947.
^Reichlin S, Utiger RD (1967). "Regulation of the pituitary-thyroid axis in man: Relationship of TSH concentration to concentration of free and total thyroxine in plasma". The Journal of Clinical Endocrinology and Metabolism. 27 (2): 251–5. doi:10.1210/jcem-27-2-251. PMID4163614.
^Liu S, Ren J, Zhao Y, Han G, Hong Z, Yan D, Chen J, Gu G, Wang G, Wang X, Fan C, Li J (2013). "Nonthyroidal illness syndrome: Is it far away from Crohn's disease?". Journal of Clinical Gastroenterology. 47 (2): 153–9. doi:10.1097/MCG.0b013e318254ea8a. PMID22874844. S2CID35344744.
^Jostel A, Ryder WD, Shalet SM (2009). "The use of thyroid function tests in the diagnosis of hypopituitarism: Definition and evaluation of the TSH Index". Clinical Endocrinology. 71 (4): 529–34. doi:10.1111/j.1365-2265.2009.03534.x. PMID19226261. S2CID10827131.
Dietrich, Johannes W.; Midgley, John E. M.; Hoermann, Rudolf (2018). Homeostasis and allostasis of thyroid function. Lausanne: Frontiers Media SA. ISBN9782889455706.