As of 2020[update], the axolotl was near extinction[6][7] due to urbanization in Mexico City and consequent water pollution, as well as the introduction of invasive species such as tilapia and perch. It is listed as critically endangered in the wild, with a decreasing population of around 50 to 1,000 adult individuals, by the International Union for Conservation of Nature and Natural Resources (IUCN) and is listed under Appendix II of the Convention on International Trade in Endangered Species (CITES).[2] Axolotls are used extensively in scientific research due to their ability to regenerate limbs, gills and parts of their eyes and brains.[8] Notably, their ability to regenerate declines with age, but it does not disappear. Axolotls keep modestly growing throughout their life and some consider this trait to be a direct contributor to their regenerative abilities.[9] Further research has been conducted to examine their heart as a model of human single ventricle and excessive trabeculation.[10] Axolotls were also sold as food in Mexican markets and were a staple in the Aztec diet.[11]
Axolotls may be confused with the larval stage of the closely related tiger salamander (A. tigrinum), which are widespread in much of North America and occasionally become paedomorphic, or with mudpuppies (Necturus spp.), fully aquatic salamanders from a different family that are not closely related to the axolotl but bear a superficial resemblance.[12]
Description
A sexually mature adult axolotl, at age 18–27 months, ranges in length from 15 to 45 cm (6 to 18 in), although a size close to 23 cm (9 in) is most common and greater than 30 cm (12 in) is rare. Axolotls possess features typical of salamander larvae, including external gills and a caudal fin extending from behind the head to the vent.[13][14] External gills are usually lost when salamander species mature into adulthood, although the axolotl maintains this feature.[15] This is due to their neoteny evolution, where axolotls are much more aquatic than other salamander species.[16]
Their heads are wide, and their eyes are lidless. Their limbs are underdeveloped and possess long, thin digits. Males are identified by their swollen cloacae lined with papillae, while females are noticeable for their wider bodies full of eggs. Three pairs of external gill stalks (rami) originate behind their heads and are used to move oxygenated water. The external gill rami are lined with filaments (fimbriae) to increase surface area for gas exchange.[15] Four-gill slits lined with gill rakers are hidden underneath the external gills, which prevent food from entering and allow particles to filter through.
Axolotls have barely visible vestigial teeth, which develop during metamorphosis. The primary method of feeding is by suction, during which their rakers interlock to close the gill slits. External gills are used for respiration, although buccal pumping (gulping air from the surface) may also be used to provide oxygen to their lungs.[15] Buccal pumping can occur in a two-stroke manner that pumps air from the mouth to the lungs, and with four-stroke that reverses this pathway with compression forces.
Axolotls have four pigmentation genes; when mutated, they create different color variants. The normal wild-type animal is brown or tan with gold speckles and an olive undertone. The five most common mutant colors are listed below.
Leucistic: pale pink with black eyes.
Xanthic: grey, with black eyes.
Albino: pale pink or white, with red eyes, which is more common in axolotls than other species.
Melanoid: all black or dark blue with no gold speckling or olive tone.
In addition, there is wide individual variability in the size, frequency, and intensity of the gold speckling, and at least one variant develops a black and white piebald appearance upon reaching maturity.[17] Because pet breeders frequently cross the variant colors, double homozygous mutants are common in the pet trade, especially white/pink animals with pink eyes that are double homozygous mutants for both the albino and leucistic trait.[18] Axolotls also have some limited ability to alter their color to provide better camouflage by changing the relative size and thickness of their melanophores.[19]
Habitat and ecology
The axolotl is native only to the freshwater of Lake Xochimilco and Lake Chalco in the Valley of Mexico. Lake Chalco no longer exists, having been drained as a flood control measure, and Lake Xochimilco remains a remnant of its former self, existing mainly as canals. The water temperature in Xochimilco rarely rises above 20 °C (68 °F), although it may fall to 6–7 °C (43–45 °F) in the winter, and perhaps lower.[20]
Surveys in 1998, 2003, and 2008 found 6,000, 1,000, and 100 axolotls per square kilometer in its Lake Xochimilco habitat, respectively.[21] A four-month-long search in 2013, however, turned up no surviving individuals in the wild. Just a month later, two wild ones were spotted in a network of canals leading from Xochimilco.[22]
The wild population has been put under heavy pressure by the growth of Mexico City. The axolotl is currently on the International Union for Conservation of Nature's annual Red List of threatened species. Non-native fish, such as African tilapia and Asian carp, have also recently been introduced to the waters. These new fish have been eating the axolotls' young, as well as their primary source of food.[23]
Axolotls are members of the tiger salamander,[24] or Ambystoma tigrinum, species complex, along with all other Mexican species of Ambystoma. Their habitat is like that of most neotenic species—a high-altitude body of water surrounded by a risky terrestrial environment. These conditions are thought to favor neoteny. However, a terrestrial population of Mexican tiger salamanders occupies and breeds in the axolotl's habitat.[citation needed]
Diet
The axolotl is carnivorous, consuming small prey such as mollusks,[25] worms, insects, other arthropods,[25] and small fish in the wild. Axolotls locate food by smell, and will "snap" at any potential meal, sucking the food into their stomachs with vacuum force.[26]
Today, the axolotl is still used in research as a model organism, and large numbers are bred in captivity. They are especially easy to breed compared to other salamanders in their family, which are rarely captive-bred due to the demands of terrestrial life. One attractive feature for research is the large and easily manipulated embryo, which allows viewing of the full development of a vertebrate. Axolotls are used in heart defect studies due to the presence of a mutant gene that causes heart failure in embryos. Since the embryos survive almost to hatching with no heart function, the defect is very observable. The axolotl is also considered an ideal animal model for the study of neural tube closure due to the similarities between human and axolotl neural plate and tube formation; the axolotl's neural tube, unlike the frog's, is not hidden under a layer of superficial epithelium.[27] There are also mutations affecting other organ systems some of which are not well characterized and others that are.[28] The genetics of the color variants of the axolotl have also been widely studied.[18]
Regeneration
The feature of the axolotl that attracts most attention is its healing ability: the axolotl does not heal by scarring and is capable of the regeneration of entire lost appendages in a period of months, and, in certain cases, more vital structures, such as tail, limb, central nervous system, and tissues of the eye and heart.[29] They can even restore less vital parts of their brains. They can also readily accept transplants from other individuals, including eyes and parts of the brain—restoring these alien organs to full functionality. In some cases, axolotls have been known to repair a damaged limb, as well as regenerating an additional one, ending up with an extra appendage that makes them attractive to pet owners as a novelty. In metamorphosed individuals, however, the ability to regenerate is greatly diminished. The axolotl is therefore used as a model for the development of limbs in vertebrates.[30] There are three basic requirements for regeneration of the limb: the wound epithelium, nerve signaling, and the presence of cells from the different limb axes.[31] A wound epidermis is quickly formed by the cells to cover up the site of the wound. In the following days, the cells of the wound epidermis divide and grow quickly forming a blastema, which means the wound is ready to heal and undergo patterning to form the new limb.
It is believed that during limb generation, axolotls have a different system to regulate their internal macrophage level and suppress inflammation, as scarring prevents proper healing and regeneration.[32] However, this belief has been questioned by other studies.[33] The axolotl's regenerative properties leave the species as the perfect model to study the process of stem cells and its own neoteny feature. Current research can record specific examples of these regenerative properties through tracking cell fates and behaviors, lineage tracing skin triploid cell grafts, pigmentation imaging, electroporation, tissue clearing and lineage tracing from dye labeling. The newer technologies of germline modification and transgenesis are better suited for live imaging the regenerative processes that occur for axolotls.[34]
Genome
The 32 billion base pair long sequence of the axolotl's genome was published in 2018 and was the largest animal genome completed at the time. It revealed species-specific genetic pathways that may be responsible for limb regeneration.[35] Although the axolotl genome is about 10 times as large as the human genome, it encodes a similar number of proteins, namely 23,251[35] (the human genome encodes about 20,000 proteins). The size difference is mostly explained by a large fraction of repetitive sequences, but such repeated elements also contribute to increased median intron sizes (22,759 bp) which are 13, 16 and 25 times that observed in human (1,750 bp), mouse (1,469 bp) and Tibetan frog (906 bp), respectively.[35]
Most amphibians begin their lives as aquatic animals which are unable to live on dry land, often being dubbed as tadpoles. To reach adulthood, they go through a process called metamorphosis, in which they lose their gills and start living on land. However, the axolotl is unusual in that it has a lack of thyroid-stimulating hormone, which is needed for the thyroid to produce thyroxine in order for the axolotl to go through metamorphosis; therefore, it keeps its gills and lives in water all its life, even after it becomes an adult and is able to reproduce. Neoteny is the term for reaching sexual maturity without undergoing metamorphosis.[36]
The genes responsible for neoteny in laboratory animals may have been identified; however, they are not linked in wild populations, suggesting artificial selection is the cause of complete neoteny in laboratory and pet axolotls.[37] The genes responsible have been narrowed down to a small chromosomal region called met1, which contains several candidate genes.[38]
Metamorphosis
The axolotl's body has the capacity to go through metamorphosis if given the necessary hormone, but axolotls do not produce it, and must be exposed to it from an external source, after which an axolotl undergoes an artificially-induced metamorphosis and begins living on land.[39] In laboratory conditions, metamorphosis is reliably induced by administering either the thyroid hormone thyroxine or thyroid-stimulating hormone. The former is more commonly used.[38]
Role of iodine
In animals with functioning thyroid glands, iodine in the form of iodide is selectively gathered into the colloid of the thyroid. Inside the colloid, iodide is reduced to elemental iodine (I2), which reacts with the tyrosyl residues of thyroglobulin. Two iodinated tyrosyl residues are conjugated together. When they are cleaved from the thyroglobulin chain, thyroid hormone is obtained.[40]
In the absence of induced metamorphosis, larval axolotls start absorbing iodide into their thyroid glands at 30 days postfertilization. Larval axolotls do produce thyroid hormone from iodide, but the amount appears highly variable. Adult axolotls do not produce thyroid hormone unless metamorphism is triggered.[41]
Diiodotyrosine, an analogue of the iodinated thyroglobulin precursor in thyroxine biosynthesis, causes metamorphosis in axolotls that have their thyroids removed.[42]Lugol's solution, which contains both iodide and I2, triggers metamorphosis when injected.[43] This is because diiodotyrosine and thyroxine is produced when I2 reacts with proteins other than thyroglobulin. If given in a bath instead of injected, I2 has no effect on axolotls.[44]Iodide, which does not react with proteins, does not trigger metamorphosis. It does speed up the rate of metamorphosis, once it has been triggered by thyroid hormone extract.[45]
An axolotl undergoing metamorphosis experiences a number of physiological changes that help them adapt to life on land. These include increased muscle tone in limbs, the absorption of gills and fins into the body, the development of eyelids, and a reduction in the skin's permeability to water, allowing the axolotl to stay more easily hydrated when on land. The lungs of an axolotl, though present alongside gills after reaching non-metamorphosed adulthood, develop further during metamorphosis.[46]
An axolotl that has gone through metamorphosis resembles an adult plateau tiger salamander, though the axolotl differs in its longer toes.[citation needed] Among hobbyists, the process of artificially inducing metamorphosis can often result in death during or even following a successful attempt, and so casual hobbyists are generally discouraged from attempting to induce metamorphosis in pet axolotls.[46] Morphed pet axolotls should be given solid footholds in their enclosure to satisfy their need for land. They should not be given live animals as food.[47]
History
Six adult axolotls (including a leucistic specimen) were shipped from Mexico City to the Jardin des Plantes in Paris in 1863. Unaware of their neoteny, Auguste Duméril was surprised when, instead of the axolotl, he found in the vivarium a new species, similar to the salamander.[verification needed] This discovery was the starting point of research about neoteny. It is not certain that Ambystoma velasci specimens were not included in the original shipment.[citation needed] Vilem Laufberger in Prague used thyroid hormone injections to induce an axolotl to grow into a terrestrial adult salamander. The experiment was repeated by Englishman Julian Huxley, who was unaware the experiment had already been done, using ground thyroids.[48] Since then, experiments have been done often with injections of iodine or various thyroid hormones used to induce metamorphosis.[16]
In other salamanders
Many other species within the axolotl's genus are also either entirely neotenic or have neotenic populations. Sirens and Necturus are other neotenic salamanders, although unlike axolotls, they cannot be induced to metamorphose by an injection of iodine or thyroxine hormone.
Neoteny has been observed in all salamander families in which it seems to be a survival mechanism, in aquatic environments only of mountain and hill, with little food and, in particular, with little iodine. In this way, salamanders can reproduce and survive in the form of a smaller larval stage, which is aquatic and requires a lower quality and quantity of food compared to the big adult, which is terrestrial. If the salamander larvae ingest a sufficient amount of iodine, directly or indirectly through cannibalism, they quickly begin metamorphosis and transform into bigger terrestrial adults, with higher dietary requirements.[49] In fact, in some high mountain lakes there live dwarf forms of salmonids that are caused by deficiencies in food and, in particular, iodine, which causes cretinism and dwarfism due to hypothyroidism, as it does in humans.
Online Model Organism Database
xenbase provides limited support (BLAST, JBrowse tracks, genome download) for Axolotls.
Threats
Axolotls are only native to the Mexican Central Valley. Although the native axolotl population once extended through most of the lakes and wetlands that make up this region, the native habitat is now limited to Lake Xochimilco as a result of the expansion of Mexico City. Lake Xochimilco is not a large body of water, but rather a small series of artificial channels, small lakes, and temporary wetlands.
Lake Xochimilco has poor water quality, caused by the region's aquaculture and agriculture demands. It is also maintained by inputs of only partially treated wastewater. Water quality tests reveal a low nitrogen-phosphorus ratio and a high concentration of chlorophyll a, which are indicative of an oxygen-poor environment that is not well-suited for axolotls.[50] In addition, the intensive use of pesticides from agriculture around Lake Xochimilco causes run off into the lake and a reduction of habitat quality for axolotls. The pesticides used contain chemical compounds that studies show to sharply increase mortality in axolotl embryos and larvae. Of the surviving embryo and larvae, there is also an increase of morphological, behavior, and activity abnormalities.[51]
Another factor that threatens the native axolotl population is the introduction of invasive species such as the Nile tilapia and common carp. These invasive fish species threaten axolotl populations by eating their eggs or young and by out-competing them for natural resources. The presence of these species has also been shown to change the behavior of axolotls, causing them to be less active to avoid predation. This reduction in activity greatly impacts the axolotls foraging and mating opportunities.[52]
With such a small native population, there is a large loss of genetic diversity. This lack of genetic diversity can be dangerous for the remaining population, causing an increase in inbreeding and a decrease in general fitness and adaptive potential. It ultimately raises the axolotl's risk for extinction, something that they are already in danger of. Studies have found indicators of a low interpopulation gene flow and higher rates of genetic drift. These are likely the result of multiple “bottleneck” incidents in which events that kill off several individuals of a population occur and sharply reduce the genetic diversity of the remaining population. The offspring produced after bottleneck events have a greater risk of showing decreased fitness and are often less capable of adaptation down the line. Multiple bottleneck events can have disastrous effects on a population. Studies have also found high rates of relatedness that are indicative of inbreeding. Inbreeding can be especially harmful as it can cause an increase in the presence of deleterious, or harmful, genes within a population.[53] The detection of introgressed tiger salamander (A. tigrinum) DNA in the laboratory axolotl population raises further concerns about the suitability of the captive population as an ark for potential reintroduction purposes.[54]
There has been little improvement in the conditions of the lake or the population of native axolotls. Many scientists are focusing their conservation efforts on translocation of captive-bred individuals into new habitats or reintroduction into Lake Xochimilco. The Laboratorio de Restauracion Ecologica (LRE) in the Universidad Nacional Autonoma de Mexico (UNAM) has built up a population of more than 100 captive-bred individuals. These axolotls are mostly used for research by the lab but plans of a semi-artificial wetland inside the university have been established and the goal is to establish a viable population of axolotls within it. Studies have shown that captive-bred axolotls that are raised in a semi-natural environment can catch prey, survive in the wild, and have moderate success in escaping predators. These captive-bred individuals can be introduced into unpolluted bodies of water or back into Lake Xochimilco to establish or re-establish a wild population.[55][56]
The axolotl is a popular exotic pet like its relative, the tiger salamander (Ambystoma tigrinum). As for all poikilothermic organisms, lower temperatures result in slower metabolism and a very unhealthily reduced appetite. Temperatures at approximately 16 °C (61 °F) to 18 °C (64 °F) are suggested for captive axolotls to ensure sufficient food intake; stress resulting from more than a day's exposure to lower temperatures may quickly lead to disease and death, and temperatures higher than 24 °C (75 °F) may lead to metabolic rate increase, also causing stress and eventually death.[57][58]Chlorine, commonly added to tapwater, is harmful to axolotls. A single axolotl typically requires a 150-litre (40-US-gallon) tank. Axolotls spend the majority of the time at the bottom of the tank.[59]
In captivity, axolotls eat a variety of readily available foods, including trout and salmon pellets, frozen or live bloodworms, earthworms, and waxworms. Axolotls can also eat feeder fish, but care should be taken as fish may contain parasites.[62]
Substrates are another important consideration for captive axolotls, as axolotls (like other amphibians and reptiles) tend to ingest bedding material together with food[63] and are commonly prone to gastrointestinal obstruction and foreign body ingestion.[64] Some common substrates used for animal enclosures can be harmful for amphibians and reptiles. Gravel (common in aquarium use) should not be used, and is recommended that any sand consists of smooth particles with a grain size of under 1mm.[63] One guide to axolotl care for laboratories notes that bowel obstructions are a common cause of death, and recommends that no items with a diameter below 3 cm (or approximately the size of the animal's head) should be available to the animal.[65]
There is some evidence that axolotls might seek out appropriately-sized gravel for use as gastroliths[66] based on experiments conducted at the University of Manitoba axolotl colony.[67][68] As there is no conclusive evidence pointing to gastrolith use, gravel should be avoided due to the high risk of impaction.[69]
Cultural significance
The species is named after the Aztec deityXolotl, the god of fire and lightning, who transformed himself into an axolotl to avoid being sacrificed by fellow gods. They continue to play an outsized cultural role in Mexico.[70] Axólotl also means water monster in the Nahuatl language.
^ abcFrost, Darrel R. (2018). "Ambystoma mexicanum (Shaw and Nodder, 1798)". Amphibian Species of the World: an Online Reference. Version 6.0. American Museum of Natural History. Retrieved 10 August 2018.
^San Francisco Examiner (San Francisco, California) 7 August 1887, page 9, authored by Yda Addis
^McIndoe, Rosemary; Smith, D. G. (1984), Seymour, Roger S. (ed.), "Functional morphology of gills in larval amphibians", Respiration and metabolism of embryonic vertebrates: Satellite Symposium of the 29th International Congress of Physiological Sciences, Sydney, Australia, 1983, Perspectives in vertebrate science, Dordrecht: Springer Netherlands, pp. 55–69, doi:10.1007/978-94-009-6536-2_4, ISBN978-94-009-6536-2, retrieved 2021-05-13
^ abFrost, Sally K.; Briggs, Fran; Malacinski, George M. (1984). "A color atlas of pigment genes in the Mexican axolotl (Ambystoma mexicanum)". Differentiation. 26 (1–3): 182–188. doi:10.1111/j.1432-0436.1984.tb01393.x.
^Pietsch, Paul; Schneider, Carl W. (1985). "Vision and the skin camouflage reactions of Ambystoma larvae: the effects of eye transplants and brain lesions". Brain Research. 340 (1): 37–60. doi:10.1016/0006-8993(85)90772-3. PMID4027646. S2CID22723238.
^Wainwright, P. C.; Sanford, C. P.; Reilly, S. M.; Lauder, G. V. (1989). "Evolution of motor patterns: aquatic feeding in salamanders and ray-finned fishes". Brain, Behavior and Evolution. 34 (6): 329–341. doi:10.1159/000116519. PMID2611639.
^Chapter 49, "Synthesis of Thyroid Hormones" in: Walter F. Boron; Emile L. Boulpaep (2012). Medical Physiology (2nd ed.). Elsevier/Saunders. ISBN9781437717532.[page needed]
^Swingle, W. W. (November 1923). "Iodine and Amphibian Metamorphosis". The Biological Bulletin. 45 (5): 229–253. doi:10.2307/1536749. JSTOR1536749.
^Ingram, W. R. (1 December 1928). "Metamorphosis of the Colorado Axolotl by Injection of Inorganic Iodine". Experimental Biology and Medicine. 26 (3): 191. doi:10.3181/00379727-26-4212.
^Dvoskin, Samuel (May 1947). "The Thyroxine-Like Action of Elemental Iodine in the Rat and Chick1". Endocrinology. 40 (5): 334–352. doi:10.1210/endo-40-5-334. PMID20245954.
^Krylov, O. A. (January 1961). "The role of haloids (bromine and iodine) in the metamorphosis of amphibia". Bulletin of Experimental Biology and Medicine. 50 (1): 724–727. doi:10.1007/BF00796048.
^Kulbisky, Gordon P; Rickey, Daniel W; Reed, Martin H; Björklund, Natalie; Gordon, Richard (1999). "The axolotl as an animal model for the comparison of 3-D ultrasound with plain film radiography". Ultrasound in Medicine and Biology. 25 (6): 969–975. doi:10.1016/s0301-5629(99)00040-x. PMID10461726.
^Björklund, N.K. (1993). Small is beautiful: economical axolotl colony maintenance with natural spawnings as if axolotls mattered. In: Handbook on Practical Methods. Ed.: G.M. Malacinski & S.T. Duhon. Bloomington, Department of Biology, Indiana University: 38–47.
^Minecraft (October 3, 2020). ""Minecraft Live: Caves & Cliffs - First Look"". YouTube. "And then we also found out that axolotls are endangered in the real world, and we think it's good to add endangered animals to Minecraft to create awareness about that." - Agnes Larsson
La posizione dei quattro poli nel 2003:1: Polo Nord geografico2: Polo Nord magnetico3: Polo Nord geomagnetico4: Polo Nord dell'inaccessibilità Lo stesso argomento in dettaglio: Artide. Il polo nord è la zona più a nord (o più a settentrione) di un qualsiasi corpo celeste (es. un pianeta o una stella) e viene usato come sistema di riferimento primario rispetto al polo sud. Facendo riferimento alla Terra, il termine può indicare diversi punti geografici posti sulla superficie terrestre, la...
Final Piala FA 2011TurnamenPiala FA 2010–2011 Manchester City Stoke City 1 0 Tanggal14 Mei 2011StadionStadion Wembley, LondonPemain Terbaik Mario Balotelli (Manchester City)[1]WasitMartin Atkinson (West Yorkshire)[2]Penonton88.643[3]CuacaCerah17 °C (63 °F)← 2010 2012 → Final Piala FA 2011 merupakan final edisi ke-130 dari Piala FA, yang merupakan kompetisi sepak bola domestik tertua di dunia.[4][5] Pertandingan ini dihelat pada...
Questa voce sull'argomento calciatori italiani è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Aldo Mainardi Nazionalità Italia Calcio Ruolo Centrocampista Termine carriera 1949 Carriera Giovanili 1937-1938 Padova Squadre di club1 1938-1943 Lecce? (2)1945-1949 Brindisi50+ (1+) 1 I due numeri indicano le presenze e le reti segnate, per le sole partite di campionato.Il simbolo → i...
Not to be confused with Euro summit. Part of a series on the History of theEuropean Union Timeline Pre-1948 ideas 1948–1957 1958–1972 1973–1993 1993–2004 2004–present Organisation European Communities (1958–2009) European Coal and Steel Community (1952–2002) European Economic Community (1958–1993) European Atomic Energy Community (1958–present) European Community (1993–2009) Justice and Home Affairs (1993–2003) Police and Judicial Co-operation in Criminal Matters (2003�...
American writer (1873–1947) Willa CatherCather in 1936BornWilella Sibert Cather(1873-12-07)December 7, 1873Gore, Virginia, U.S.DiedApril 24, 1947(1947-04-24) (aged 73)New York City, U.S.Resting placeJaffrey, New Hampshire, U.S.OccupationNovelistEducationUniversity of Nebraska, Lincoln (BA)Period1905–1947PartnerEdith Lewis (c. 1908–1947)Signature Willa Sibert Cather (/ˈkæðər/;[1] born Wilella Sibert Cather;[2] December 7, 1873[A] – April 24, 1947)...
Daftar berikut ini berisi semua kota (termasuk kota kecil dan desa) di prefektur Aomori, Jepang, yang penduduknya berjumlah lebih dari 5.000 jiwa menurut sensus 2015. Per 1 Oktober 2015, ada 33 tempat yang memenuhi kriteria ini. Daftar ini hanya mencantumkan jumlah penduduk kota, kota kecil, dan desa di dalam batas resminya, tidak termasuk kotamadya atau kota pinggiran lain di kawasan sekitarnya. Daftar Aomori Hachinohe Hirosaki Tabel berikut ini berisi 33 kota, kota kecil, dan desa di Aomori...
Building in Massachusetts, United States941–955 Boylston StreetGeneral informationArchitectural styleRichardsonian RomanesqueTown or cityBoston, MassachusettsCountryUnited StatesCoordinates42°20′53″N 71°05′08″W / 42.34806°N 71.08566°W / 42.34806; -71.08566Completed1887[1]ClientCity of BostonDesign and constructionArchitect(s)Arthur H. Vinal The building at 941–955 Boylston Street in the Back Bay district of Boston, Massachusetts was designed by ...
Iga penyetSajianMenu utamaTempat asalIndonesiaDaerahKota Surabaya, Jawa TimurDibuat olehMasakan JawaSuhu penyajianPanasBahan utamaDaging iga sapi yang disajikan dengan sambalSunting kotak info • L • BBantuan penggunaan templat ini Media: Iga penyet Iga penyet adalah masakan Indonesia yang terdiri dari daging iga sapi goreng yang disajikan dengan sambal terasi yang pedas. Makanan ini pertama kali populer di wilayah Arekan Jawa Timur, dan sekarang telah tersebar ke selur...
Pour les articles homonymes, voir Parti libéral démocrate. Libéraux-démocratesLiberal Democrats Logotype officiel. Présentation Chef Edward Davey Fondation 2 mars 1988 Siège 8-10 Great George Street, Londres Chef adjointe Daisy Cooper Positionnement Centre[1],[2],[3],[4] à centre gauche[5],[6] Idéologie LibéralismeSocial-libéralismeSécularismeFédéralisme britanniqueEurophilie Affiliation européenne ALDE Affiliation internationale Internationale libérale Couleurs Or Site web li...
Pemilihan presiden India 1967196219696 Mei 1967Kandidat Calon Zakir Husain Koka Subba Rao Partai Independen Independen Negara bagian Andhra Pradesh Andhra Pradesh Suara elektoral 471,244 363,971 Presiden petahanaSarvepalli Radhakrishnan Independent (politikus) Presiden terpilih Zakir Husain Independent (politikus) Komisi Pemilihan India mengadakan pemilihan presiden India ke-4 pada 6 Mei 1967. Dr. Zakir Husain, dengan 471,244 suara, memenangkan kepresidenan atas pesaingnya K...
هذه المقالة عن رفح مصر. لمعانٍ أخرى، طالع رفح (فلسطين). رفح رفح معبر رفح البري تقسيم إداري البلد مصر[1] عاصمة لـ مركز رفح التقسيم الأعلى محافظة شمال سيناء خصائص جغرافية إحداثيات 31°17′19″N 34°14′28″E / 31.288611°N 34.241111°E / 31.288611; 34.241111 السكان التعداد الس...
Tell Me You Love Me World TourTour yang diadakan oleh Demi LovatoLokasi Amerika Utara Eropa Album terkaitTell Me You Love MeTanggal awal26 Februari 2018 (2018-02-26)Tanggal akhir22 Juli 2018 (2018-7-22)Legs3Jumlah acara43Hadirin481,795Box office$24.1 million[1]Kronologi konser Demi Lovato Future Now Tour(2016) Tell Me You Love Me World Tour(2018) Holy Fvck Tour(2022) Tell Me You Love Me World Tour[2][3] adalah tur konser keenam oleh penyanyi asal Amerika Seri...
Carlo Perrin Presidente della Regione Valle d'AostaDurata mandato8 luglio 2003 –4 luglio 2005 PredecessoreRoberto Louvin SuccessoreLuciano Caveri Assessore all'Agricoltura e risorse naturali della Valle d'AostaDurata mandato30 giugno 1998 –7 luglio 2003 PresidenteDino ViérinRoberto Louvin PredecessoreFranco Vallet SuccessoreGiuseppe Isabellon Senatore della Repubblica ItalianaDurata mandato28 Aprile 2006 –28 Aprile 2008 LegislaturaXV legislatur...
Tulsa tornadoes of August 2017Remington Tower in Tulsa heavily damaged by August 6, 2017 tornado DurationAugust 6, 2017 Highest winds120–130 mph (190–210 km/h) (Estimated by damage survey) Tornadoesconfirmed4Max. rating1EF2 tornadoDuration oftornado outbreak254 minutes Fatalities30 injuriesDamage$50.240 million (2015 USD)[1]Areas affectedNortheastern Oklahoma1Most severe tornado damage; see Enhanced Fujita scale2Time from first tornado to last tornado The 2017 Tulsa...
اللغة الفوراوية الناطقون 746000 الكتابة إخطاطة لاتينية النسب لغات نيلية صحراوية لغات نيلية صحراويةلغات فورالفوراوية ترميز أيزو 639-3 fvr تعديل مصدري - تعديل اللغة الفوراوية (باللغة الفوراوية:belé poor أو pooríŋ belé) هي لغة من اللغات النيلية الصحراوية التي يتحدث بها �...
Architecture school at the University of Southern California USC School of ArchitectureTypePrivateEstablished1914[1]Parent institutionUniversity of Southern CaliforniaAcademic affiliationNAABDeanBrett SteeleAssociate DeanJoon-Ho Choi, Vittoria di Palma, Trudi SandmeierAcademic staff112[1]Undergraduates500[1]Postgraduates200[1]LocationLos Angeles, California, United StatesCampusUrbanColorsCardinal and Gold Websitearch.usc.edu The USC School of A...
Treta makedonska fudbalska ligaSport Calcio TipoSquadre di club Paese Macedonia del Nord Cadenzaannuale Aperturaagosto Chiusuramaggio Partecipanti51 squadre Formula5 gironi + play-off Promozione inVtora liga Retrocessione inMakedonski Opštinski Ligi Sito Internetwww.ffm.com.mk StoriaFondazione1992 Detentore Baškimi (2011) Vardar Negotino Osogovo Kočani Vëllazërimi 77 Novaci Edizione in corsoTreta makedonska fudbalska liga 2023-2024 Modifica dati su Wikidata&...
معركة كورونل جزء من الحرب العالمية الأولى التاريخ 1 نوفمبر 1914 الموقع المحيط الهادئ 36°59′01″S 73°48′49″W / 36.983611111111°S 73.813611111111°W / -36.983611111111; -73.813611111111 تعديل مصدري - تعديل 36°59′1″S 73°48′49″W / 36.98361°S 73.81361°W / -36.98361; -73.81361 الأسطول الألمان...